

PHOTONICS DEUTSCHLAND GMBH

HiPic/HPD-TA RemoteEx
Programmers Handbook

HiPic/HPD-TA Version 8.3.0 or later

WT, HPD, Document Date 25.06.2008

Table of content
Table of content .. 2
Introduction .. 4

About this manual... 4
Getting the system working .. 4
General syntax .. 5
Delimiter of commands and responses ... 5
Case sensitivity ... 5
Command response... 6
Responses to TCP-IP connection.. 6
Messages and MsgBoxReply.. 6
Invalid syntax.. 6
Text based communication ... 6
Priority commands.. 7
Error codes.. 7
Protocol... 8

List of commands and parameters .. 9
General commands ... 9

Appinfo(type) ... 9

Status() .. 9

Stop() .. 9

Shutdown() .. 9

Application Commands .. 9
AppStart(fVisible,sINIFile) ... 9

AppEnd() ... 10

AppInfo(parameter) ... 10

MainParamGet(parameter) .. 10

MainParamInfo(parameter)/ MainParamInfoEx(parameter) 10

GenParamGet(parameter) ... 11

GenParamSet(Parameter,Value) ... 11

GenParamInfo(Parameter) / GenParamInfoEx(Parameter) 11

Acquisition commands ... 13
AcqStart(AcqMode) .. 13

AcqStatus() .. 13

AcqStop() .. 13

AcqParamGet(Parameter) ... 13

AcqParamSet(Parameter,Value) ... 14

AcqParamInfo(parameter) / AcqParamInfoEx(parameter) 14

AcqLiveMonitor(MonitorType) .. 15

Camera commands.. 17
CamParamGet(Location,Parameter) .. 17

CamParamSet(Location,Parameter,Value) 19

CamParamInfo(Parameter) / CamParamInfoEx(Parameter) 19

CamGetLiveBG() ... 20

External devices commands (HPD-TA only) ... 21
DevParamGet(Location,Parameter) .. 21

DevParamSet(Location,Parameter,Value) 21

DevParamInfo(Device, Parameter) / DevParamInfoEx(Device ,Parameter) 22

DevParamsList(Device) .. 23

Correction commands ... 24
CorParamGet(Location,Parameter) .. 24

CorParamSet(Location,Parameter,Value) 24

CorParamInfo(Parameter) / CorParamInfoEx(Parameter) 24

CorDoCorrection(Destination,Type) .. 25

Defect pixel tool commands ... 26
DefPixParamGet(Parameter) .. 26

DefPixParamSet(Parameter,Value) .. 26

DefPixParamInfo(Parameter) / DefPixParamInfoEx(Parameter) 26

DefPixCalculate() .. 27

DefPixShow() ... 27

DefPixSave(sFile) .. 27

DefPixSaveActivate(sFile) .. 27

DefPixLoadHot(sFile) ... 27

DefPixLoadDead(sFile) .. 27

DefPixSetType(sType) ... 27

Image commands .. 28
ImgParamGet(Parameter) ... 28

ImgSave(Destination,ImageType,FileName,Overwrite) 28

ImgLoad(ImageType,FileName) .. 29

ImgDelete(Destination) ... 29

ImgStatusGet() ... 29

ImgStatusSet(Destination,Token,Sectionidentifier,Tokenidentifier) 30

ImgDataInfo(Destination, DataType) 30

ImgDataGet(Destination,Type) ... 30

ImgDataDump(Destination,Type,filename) 31

ImgRingBufferGet(Type,SeqNumber,filename) 32

Quick profile commands... 33
QprParamGet(Parameter) ... 33

QprParamSet(Parameter,Value) ... 33

QprParamInfo(Parameter) / QprParamInfoEx(Parameter) 33

LUT commands .. 34
LutParamGet(Parameter) ... 34

LutParamSet(Parameter,Value) ... 34

LutParamInfo(Parameter) / LutParamInfoEx(Parameter) 34

LutSetAuto() ... 34

Sequence commands... 35
SeqParamGet(Parameter) ... 35

SeqParamSet(Parameter,Value) ... 36

SeqParamInfo(Parameter) / SeqParamInfoEx(Parameter) 36

SeqStart() ... 36

SeqStop() .. 36

SeqStatus() .. 36

SeqDelete() .. 36

SeqSave(ImageType,FileName,Overwrite) 36

SeqLoad(ImageType,FileName) .. 36

Using Script files .. 37
General.. 37
Special functions provided for the Script.. 38
Sample Script files .. 41

RemoteExClient sample ... 42
General.. 42
TCP-IP ports and sending commands... 42
Transferring profile data ... 42
Showing LIVE display ... 43
Transferring profile or image data with ring buffer .. 44
High speed data transfer ... 45

Identifying the Host name .. 46

Introduction

About this manual

Normal explanation text is written in the Font “Times New Roman”.
Commands and responses are written in “Courier New” and “Courier

Bold”.

If a text is written which should be used as is written standard

version of “Courier New” is used.

If the word is written instead of several possibilities (in a

programming language we would talk of a variable) italics are

used.

Getting the system working

To get the system working proceed with the following steps:

1.) Install the HiPic or HPD-TA.
2.) Run the HiPic or HPD-TA once and verify that it operates correctly. This step registers the

HiPic or HPDTA executable files correctly as ActiveX components.
3.) Run HiRemoteEx.exe or HiRemoteEx.exe from the application directory
4.) Type „Appstart()“ into the Text box labeled “direct command”. The HiPic or HPDTA

should now start up. If it does not or if you get an automation error the HiPic or HPDTA
may not be registered correctly.
One possible solution is to uninstall HiPic or HPDTA, Call RegClean to fix registry errors
and install HiPic or HPDTA again.
If everything is OK type „Append()“into the Text box labeled direct command. The HiPic or
HPDTA should disappear.

5.) The next step is to establish a communication between the client program and the
HiRemoteEx.exe or TaRemoteEx.exe. A small sample program is delivered which is called
RemoteExClient.exe. This command can communicate with both HiPic and HPDTA. You
have to establish a communication via a TCP-IP port. Make sure that on both
HiRemoteEx.exe or TaRemoteEx.exe and RemoteExClient.exe the TPC-IP port is specified
identical. In our sample it is set to 1001. It is not necessary that also the secondary port (data
port) is specified now. It is also important to specify the correct host name. The host name
could either be a computers name (as it appears under network neighborhood, see also
“Identifying the Host name” for details later) or a TCP-IP address. If you communicate the
RemoteEx on the same computer “localhost” can be used as the computers name.
We assume that HiRemoteEx.exe or TaRemoteEx.exe is still running (Not necessarily the
main application). Start RemoteExClient.exe and click to „Connect to Host“ on the left side.
The Disconnect pushbutton should be enabled and also the „Send“ and „Send & Wait“
pushbuttons should be enabled.
If this is not the case, there are several possibilities:

• The HiRemoteEx.exe or TaRemoteEx.exe is not running

• The host name is not specified correctly
The port numbers are not identical on HiRemoteEx.exe or TaRemoteEx.exe and
RemoteExClient.exe

• The system does not allow to access ports. Sometimes a virus scanner disables the
access. Change the system setting accordingly

6.) Type „Appstart()“ in the command text box of the RemoteEx Client window. The program
should startup. Type „Acqstart(acquire)“ to acquire an image. Type „Append()“ to end the
application.

Schematic diagram of how the RemoteEx works.

The program HiRemoteEx.exe or TaRemoteEx.exe can be started in the autostart folder and can run
continuously.

General syntax
The commands used in the RemoteEx application have the following syntax:
CommandName(parameter1,parameter2,etc.)

Example:
appstart() (Start the application)

A pair of parentheses is used to enclose the parameters. Parameters are separated by comma. Text
or parameters should therefore never contain commas. Please make sure to delimit any command by
a <CR> character (ASCII=13). In this document the <CR> character will not be shown because it is
a non printable character.

Delimiter of commands and responses
At the end of any command the <Carriage Return> character (<CR>, ASCII value 13) has to be
used. The RemoteEx also delimits any response by a <CR> character, thus individual responses can
be separated by locating the <CR> character.

Case sensitivity
Interpretation of the command is case insensitive thus „CommandName“ is treated identical to

„commandname“ or „COMMANDNAME“.

Command response
Every command is replied by an individual response. The command response contains the error
code and the command name (not the full command sent to the RemoteEx application). This
response should be use as a kind of handshake. A new command should not be sent unless the
response for the last one has been detected. Sometimes a response contains one or more other
parameters. The number of parameters and its meaning depend on the command.
Syntax of the response is:
EC,CommandName

or
EC,CommandName,parameter1,parameter2,etc.

where EC is an integer number indicating the Error code. If the command has been executed
successfully EC is zero. Once the response has been sent, the system is ready to execute the next
command. Though the RemoteEx program has an input FIFO for the command execution it is
recommended to individually wait for the command response and react according to the error code
and other returned parameters.
Example:
0,appstart (No error, command base name is returned)

Responses to TCP-IP connection
Whenever a client connects successfully to the command or data port of the RemoteEx the
RemoteEx sends a response. This makes it easier to the client to find out whether the RemoteEx is
available and whether the connection took place successfully.
The response are:
RemoteEx Ready <CR> Response to the command port
RemoteEx Data Ready <CR> Response to the data port

Messages and MsgBoxReply
Additionally to the command response which indicates the completion of the command messages
are sent to the client program. They normally do not refer to a command and should not be used for
command handshake. The same is true for strings which are sent instead of a MessageBoxReply.
Messages MessageBoxReply strings can be distinguished from command responses by its error
code. Error codes used in combination with Messages are ECMessage(4) and ECMsgBoxReply(5).
Example:
4,Application closed by user (Message,Message text)

Invalid syntax
If the syntax of the command is invalid (e.g. missing parenthesis) the following response is sent:
1,FullCommand,Invalid syntax

Example, command:

Appstart(((syntax not correct because right

parenthesis is missing)
Response

1,Appstart((,Invalid syntax (Invalid syntax,fullcommand,text)

Normally responses do never contain parentheses. The case of invalid syntax is the only case where
this happens because the full command is returned.

Text based communication
Commands and other information are always exchanged on a text base (This is not true in the case
that image or other binary data is exchanged by a separate port; see a detailed explanation about
data exchange later). Commands are significant expressions and normally can contain several parts.
The first part always specifies the main circumstance where following parts give more detailed
information. The associated action is always the last part of the command.

Example:
AppInfo(directory) (get info about application directory)

Parameters are mostly specified as text based keywords.
Example:
AcqStart(Live) (Start live mode)

Only if really numerical values are used these are specified in text formatted version.
Example:
CamParamSet(AI,NrExposures,10) (Set analog integration count to 10)

Priority commands
Since version 8.2 the structure of the RemoteEx has been simplified for the sake of speed and has
no more priority commands (The commands itself which have been priority commands are still
available for compatibility reasons).

Error codes

Every response and message which is sent back from the RemoteEx to the client is preceded by a
number indicating its status. This status is comparable to the function value of Windows API
functions, which normally returns an information if the functions has succeeded or failed. We call it
the “error code”. There are two situations where a string sent from the RemoteEx does not
correspond to the command directly. These two situations are messages (sent during run time) and
MessageBox Results (also sent during Runtime) with the ErrorCodes ECMessage and
ECMsgBoxReply. Strings with these ErrorCodes are no responses to commands.
All other ErrorCodes are responses to commands. Only in the case of ECNoError the command has
been successfully executed.

Error code Meaning Response to
command

ECNoError (=0) Command successfully executed X
ECInvalidSyntax (=1) Invalid syntax (command must be followed by

parentheses and must have the correct number
and type of parameters separated by comma)

X

ECUnkownCommandOrParameters
(=2)

Command or Parameters are unknown. X

ECCommandNotPossible (=3) Command currently not possible X
ECMessage (=4) A message during runtime (example: a string

indicating the frame rate during live mode)

ECMsgBoxReply (=5) Reply value of a message box. The structure of
RemoteEx does not allow sending inquiry
commands from the RemoteEx to the client. In
cases where the standalone program needs to
popup a message box to get some information
from the user the RemoteEx just continues
execution with the default value of this
message box. When such case happens a string
is sent to the RemoteEx Client informing it
about this default value.

ECMissingParameter (=6) Parameter is missing X
ECCannotExecute (=7) Command cannot be executed X
ECErrorDuringExecution (=8) An error has occurred during execution X
ECCannotSendData (=9) Data cannot be sent by TCP-IP X
ECValueOutOfRange (=10) Value of a parameter is out of range X

Protocol
The RemoteEx has a protocol feature (available from version 8.2.0 pf5) which writes all important events together with
a time stamp to a text file. This feature can be switched on or off with a check box labeled “Write protocol”.
The protocol is written to a file RemoteExProtocol.txt in the directory of the RemoteEx program.
The format is as follows:

17479118.988 GEN RemoteEx started 04-21-2008 14:06:42

17483643.169 DCM AppStart()

17483997.321 DCR 4,Checking values from INIT

17483998.590 DCR 4,Checking Licence

17493009.192 DCR 4,Check validity of controls

17493013.427 DCR 4,Load main window

17493081.895 DCR 4,

17493548.863 DCR 0,AppStart

17507188.419 GEN Command port connected

17508233.739 GEN Data port connected

17523851.562 TCM AcqStart(Live)

17524483.751 TCR 0,AcqStart

17535216.468 TCR 4,Frame rate 3,00 Hz

17536216.549 TCR 4,Frame rate 3,00 Hz

17536238.750 TCM AcqStop()

17536363.402 TCR 0,AcqStop

17547479.294 DCR 4,Mouse moved to (584,127), (584 No unit, 127 No unit), Int: 4095

17566516.225 GEN RemoteEx ended

The number in the first column is the timestamp in ms (The values are relative values. Under certain circumstances this
denotes the time after booting up the computer system).
The abbreviation in the second column mean:
GEN: General
DCM: Direct command
DCR: Response from direct command
TCM: command sent by TCP-IP
TCR: Response received by TCP-IP
DAR: Data received on second port
The third column describes the text data associated to the command/response

List of commands and parameters

General commands

Appinfo(type)

Returns the current application type (HiPic or HPDTA). This command is executed even if the

application has not been started.
Response
0,Appinfo,HiPic

Status()

Returns whether or not a command is currently executed
Response
0,Status,idle

0,Status,busy,commandname

Note: This command is still available but it is obsolete because it is only executed after the current
command has been finished.

Stop()

Stops the command currently executed if possible. (Few commands have implemented this
command right now)
Response:
0,Stop

Shutdown()

This command shuts down the application and the RemoteEx program. Response is sent before
shutdown.
The usefulness of this command is limited because it cannot be sent once the application has been
hang up. Restarting of the remote application if an error has occurred should be done by other
means (example: Power off and on the computer from remote and starting the RemoteEx from the
autostart).

Response:
0,Shutdown

Application Commands

AppStart(fVisible,sINIFile)

This command starts the application. If the application has already been started this command
returns immediately, otherwise it waits until it has been started completely.
If fVisible is 0 or FALSE the application starts invisible. If this parameter is omitted or if it is others
than 0 or FALSE the application starts visible. This parameter is ignored if the application is
already running. If you want to make sure that the visible state is set if desired you should first close
the application with AppEnd() and then restart it with the AppStart() command.

If sINIfile is specified the application starts with the INI-File (new from version 8.3.0). This
parameter is also ignored if the application is already running.

AppEnd()

This command ends the application.

AppInfo(parameter)

This command returns information about the application.

Where parameter can be one of the following:

Date Application date

Version Application version

Directory Application directory

Title Application title

Titlelong Application title (long version)

Response:
0,AppInfo,info

MainParamGet(parameter)

This command gets the values of parameters visible in the main window (new in version 8.2).

Parameter can be one of the following:
ImageSize Size of an image which if it would be acquired now
Message Message text
Temperature Temperature for cameras with cooling whether the temperature

can be readout

For the HPD-TA there are the following additional parameters:
GateMode Gate mode
MCPGain MCP gain
Mode Mode
Plugin Plugin
Shutter Shutter
StreakCamera Streak camera
TimeRange Time range

MainParamInfo(parameter)/ MainParamInfoEx(parameter)

This command gets information about parameters visible in the main window (new in version 8.2).
MainParamInfoEx (available from 8.2.0 pf5) returns more detailed information in case of a list

parameter (Parameter type = 2) than MainParamInfo.

Example2:
MainParamInfo(Temperature)

Response:
0,MainParamInfo,Temperature,-50,5

The response consists of the following parts separated by commas:
Meaning Value
Errorcode 0

CommandName MainParamInfo

Label Temperature

Current value -50

Parameter Type 5

The Parameter Type can have the following values:
5=Display A string which is displayed only

GenParamGet(parameter)

This command gets the values of parameters in the general options (new in version 8.2).
Parameter can be one of the following:
RestoreWindowPos Restore window positions
UserFunctions Call user functions

For the HPD-TA there are the following additional parameters
ShowStreakControl Shows or hides the Streak status/control dialog
ShowDelay1Control Shows or hides the Delay1 status/control dialog
ShowDelay2Control Shows or hides the Delay2 status/control dialog
ShowSpectrControl Shows or hides the Spectrograph status/control dialog

Example:
GenParamGet(RestoreWindowPos)

Response:
0,GenParamGet,1

GenParamSet(Parameter,Value)

This command sets the value of parameters in the general options (new in version 8.2). Possible
values for Parameter are described above.

Example:
GenParamSet(RestoreWindowPos,0)

Response:
0,GenParamSet

GenParamInfo(Parameter) / GenParamInfoEx(Parameter)

This command gets information about the specified parameter (new in version 8.2).
GenParamInfoEx (available from 8.2.0 pf5) returns more detailed information in case of a list

parameter (Parameter type = 2) than GenParamInfo.

Example:
GenParamInfo(RestoreWindowPos)

Response:
0,GenParamInfo,RestoreWindowPos,Restore window positions,1,0

The response consists of the following parts separated by commas:
Meaning Value
Errorcode 0

CommandName GenParamInfo

Label Restore window positions

Current value 1

Parameter Type 0

The Parameter Type can have the following values:
0= Boolean Can have the values true or false. Valid entries are „true“ (true),

„false“ (false), „on“ (true), „off“ (false), „yes“ (true), „no“ (false), „0“
(false), or any other numerical value (true). On output only 0 (false)
and 1 (true) is used.

Acquisition commands

AcqStart(AcqMode)

This command starts an acquisition.
AcqMode is one of the following:

Live Live mode

Acquire Acquire mode

AI Analog integration

PC Photon counting

Response:
0,AcqStart

AcqStatus()

This command returns the status of an acquisition.
Response:
0,AcqStatus,idle

or
0,AcqStatus,busy,Live

AcqStop()

This command stops the currently running acquisition. It can have an optional parameter (available
from 8.2.0 pf5) indicating the timeout value (in ms) until this command should wait for an
acquisition to end. The range of this timeout value is [1…60000] and the default value is 1000 (if
not specified).
Example: AcqStop(5000) (waits maximum 5 seconds for an acquisition to end until it timeouts)

Response:
0,AcqStop (Successfully stopped)

or
7,AcqStop,timeout (Timeout while waiting for stop)

AcqParamGet(Parameter)

This command gets the values of the acquisition options (See the meaning of these options in the
manual or help file)
Parameter can be one of the following:
DisplayInterval Display interval in Live mode
32BitInAI Creates 32 bit images in Analog integration mode
WriteDPCFile Writes dynamic photon counting file
AdditionalTimeout Additional timeout
DeactivateGrbNotInUse Deactivate the grabber while not in use
CCDGainForPC Default setting for photon counting mode (new in version 8.2)
32BitInPC Create 32 bit images in Photon counting mode (new in version

8.2)
MoireeReduction Strength of Moiré reduction (new in version 8.2)

The following parameter is no longer available from version 8.2:
PCMode Photon counting mode

Example:
AcqParamGet(32BitInAI)

Response:
0,acqparamget,1 The parameter 32BitInAI is set to true

AcqParamSet(Parameter,Value)

This command sets the specified parameter of the acquisition options. Possible values for
Parameter are described above.

Example:
acqparamset(DisplayInterval,100)

Response:
0,acqparamset

AcqParamInfo(parameter) / AcqParamInfoEx(parameter)

This command gets information about the specified parameter.
AcqParamInfoEx (available from 8.2.0 pf5) returns more detailed information in case of a list

parameter (Parameter type = 2) than AcqParamInfo.

Example:
acqparaminfo(AdditionalTimeout)

Response:
0,acqparaminfo,AdditionalTimeout [sec]:,0,1,0,1800

or

Example2:
acqparaminfo(PCMode)

Response:
0,acqparaminfo,photon counting method,Gravity,2

The response consists of the following parts separated by commas:
Meaning Value
Errorcode 0

CommandName acqparaminfo

Label AdditionalTimeout [sec]:

Current value 0

Parameter Type 1

Minimum (numerical type only) 0

Maximum (numerical type only) 1800

The Parameter Type can have the following values:
0= Boolean Can have the values true or false. Valid entries are „true“ (true),

„false“ (false), „on“ (true), „off“ (false), „yes“ (true), „no“ (false), „0“
(false), or any other numerical value (true). On output only 0 (false)
and 1 (true) is used.

1= Numeric A numerical value. In the case of a numerical value the minimum and
maximum value is returned (But not for other parameter types).

2= List The value is one entry in a list.
3=String Any string can be used
4= ExposureTime An expression which evaluates to a time like „5ms“, „1h“, „1s“ etc.

Valid units are ns (nanosecond), us (microsecond), ms (millisecond), s
(second), m (minute), h(hour)

Note: In case of a list or an exposure time the number of entries and all list entries are returned in
the response of the AcqParamInfoEx command.

AcqLiveMonitor(MonitorType)

This command starts a mode which returns infomations on every new image acquired in live mode.
Once this command is activated Together with every new live image a message is sent with certain
information.
By setting MonitorType to one of the following values these types of information can be

obtained:

Off No messages are output. This setting can be used to stop live

monitoring.
Notify A message is sent with every new live image. No other information is

attached. The message can then be used to observe activity or to get
image or other data explicitly.

NotifyTimeStamp (available from 8.2.0 pf5) A message is sent with every new live

image. The message contains the timestamp of the image when it was
acquired in ms.

RingBuffer The data acquired in Live mode is written to a ring buffer inside the

RemoteEx application. A message is sent with every new live image.
This message contains a sequence number. The imgRingBufferGet
command can be used to get the data associated to the specified
sequence number. Please see also the description of the
imgRingBufferGet command and the description of the sample client
program.
Note: Because the data is transferred by ActiveX from one application
to anther this method cannot be used for systems with very high data
rate (like the C9300 camera).

Average Returns the average value within the full image or a specified area.

Minimum Returns the minimum value within the full image or a specified area.

Maximum Returns the maximum value within the full image or a specified area.

Profile Returns a profile extracted within the full image or a specified area in

text form.

The Syntax of the command can be either of the following:

AcqLiveMonitor(MonitorType)

This format applies to MonitorType =Off/Notify

AcqLiveMonitor(MonitorType,NumberOfBuffers)

This format applies to MonitorType =RingBuffer

NumberOfBuffers specifies the number of buffers allocated inside the RemoteEx.

AcqLiveMonitor(MonitorType,FullArea)

This format applies to MonitorType=Average/Minimum/Maximum. The specified

calculation algorithm is performed on the full image area.

AcqLiveMonitor(MonitorType,Subarray,X,Y,DX,DY)

This format applies to MonitorType=Average/Minimum/Maximum The specified

calculation algorithm is performed on a sub array specified by X (X-Offset), Y (Y-Offset), DX

(Image width) and DY (Image height).

AcqLiveMonitor(MonitorType,ProfileType,FullArea)

This format applies to MonitorType=Profile.

ProfileType can be one of the following:

1=Line profile
2=Horizontal profile (integrated)
3=Vertical profile (integrated)

The profile is extracted from the full image area

AcqLiveMonitor(MonitorType,ProfileType,Subarray,X,Y,DX,DY)

This format applies to MonitorType=Profile. The profile is extracted from a subarray

specified by X (X-Offset), Y (Y-Offset), DX (Image width) and DY (Image height).

The response is:
0,AcqLiveMonitor

During live monitor the following messages can appear:
4,AcqLiveMonitor,notify (Notify)

4,AcqLiveMonitor,notifytimestamp,timestamp (Notify timestamp)

4,AcqLiveMonitor,ringbuffer,Seqnumber,timestamp (RingBuffer)

4,AcqLiveMonitor,data (Average,Minimum,Maximum)

4,AcqLiveMonitor,data0,data1,... (Profile)

Camera commands

CamParamGet(Location,Parameter)

This command gets the values of the camera options (See the meaning of these options in the
manual or help file)

Location can be one of the following:
Setup Part of the options dialog
Live Parameters on the Live tab of the acquisition dialog
Acquire Parameters on the Acquire tab of the acquisition dialog
AI Parameters on the Analog Integration tab of the acquisition

dialog
PC Parameters on the Photon counting tab of the acquisition dialog

Parameter can be one of the following (Which of these parameters are relevant is dependent on

the camera type. Please refer to the camera options dialog):

Setup (options) parameter
TimingMode Timing mode (Internal / External)
TriggerMode Trigger mode
TriggerSource Trigger source
TriggerPolarity Trigger polarity
ScanMode Scan mode
Binning Binning factor
CCDArea CCD area
LightMode Light mode
Hoffs Horizontal Offset (Subarray)
HWidth Horizontal Width (Subarray)
VOffs Vertical Offset (Subarray)
VWidth Vertical Width (Subarray)
ShowGainOffset Show Gain and Offset on acquisition dialog
NoLines Number of lines (TDI mode)
LinesPerImage Number of lines (TDI mode)
ScrollingLiveDisplay Scrolling or non scrolling live display
FrameTrigger Frame trigger (TDI or X-ray line sensors)
VerticalBinning Vertical Binning (TDI mode)
TapNo Number of Taps (Multitap camera)
ShutterAction Shutter action
Cooler Cooler switch
TargetTemperature Cooler target temperature
ContrastEnhancement Contrast enhancement
Offset Analog Offset
Gain Analog Gain
XDirection Pixel number in X direction
Offset Vertical Offset in Subarray mode
Width Vertical Width in Subarray mode
ScanSpeed Scan speed
MechanicalShutter Behavior of Mechanical Shutter
Subtype Subtype (X-Ray Flatpanel)
AutoDetect Auto detect subtype
Wait2ndFrame Wait for second frame in Acquire mode

DX Image Width (Generic camera)
DY Image height (Generic camera)
XOffset X-Offset (Generic camera)
YOffset Y-Offset (Generic camera)
BPP Bits per Pixel(Generic camera)
CameraName Camera name (Generic camera)
ExposureTime Exposure time (Generic camera)
ReadoutTime Readout time Generic camera)
OnChipAmp On chip amplifier
CoolingFan Cooling fan
Cooler Coolier
ExtOutputPolarity External output polarity
ExtOutputDelay External output delay
ExtOutputWidth External output width
LowLightSensitivity Low light sensitivity
DCam3SetupProp_xxxx A setup property in the Options(setup) of a DCam 3.0 module.

The word xxxx stand for the name of the property (This is what
you see in the labeling of the property). Blanks or underscores
are ignored.
Example: Dcam2SetupProp_ReadoutDirection (a parameter for
the C10000)

Parameters on the acquisition Tabs of the Acquisition dialog
Exposure Exposure time
Gain Analog gain
Offset Analog Offset
NrTrigger Number of trigger
Threshold Photon counting threshold
DoRTBacksub Do realtime background subtraction
DoRTShading Do realtime shading correction
NrExposures Number of exposures
ClearFrameBuffer Clear frame buffer on start
AmpGain Amp gain
SMD Scan mode
RecurNumber Recursive filter
HVoltage High Voltage
AMD Acquire mode
ASH Acquire shutter
ATP Acquire trigger polarity
SOP Scan optical black
SPX Superpixel
MCP MCP gain
TDY Time delay
IntegrAfterTrig Integrate after trigger
SensitivityValue Sensitivity (value)
EMG EM-gain (EM-CCD camera)
BGSub Background Sub
RecurFilter Recursive Filter
HighVoltage High Voltage
StreakTrigger Streak trigger
FGTrigger Frame grabber Trigger
SensitivitySwitch Sensitivity (switch)
BGOffset Background offset

ATN Acquire trigger number
SMDExtended Scan mode extended
LightMode Light mode
ScanSpeed Scan Speed
BGDataMemory Memory number for background data (Inbuilt background sub)
SHDataMemory Memory number for shading data (Inbuilt shading correction)
SensitivityMode Sensitivity mode
Sensitivity Sensitivity
Sensitivity2Mode Sensitivity 2 mode
Sensitivity2 Sensitivity 2
ContrastControl Contrast control
ContrastGain Contrast gain
ContrastOffset Contrast offset
PhotonImagingMode Photon Imaging mode
HighDynamicRangeMode High dynamic range mode
RecurNumber2 Second number for recursive filter (There is a software recursive

filter and some camera have this as a hardware feature) (new
from 8.3.0)

RecurFilter2 Second recursive filter (There is a software recursive filter and
some camera have this as a hardware feature) (new from 8.3.0)

FrameAvgNumber Frame average number
FrameAvg Frame average

CamParamSet(Location,Parameter,Value)

This command sets the specified parameter of the acquisition options. Possible values for
Parameter are described above. When specifying a parameter value the value has to be written as

it appears in the corresponding control.

CamParamInfo(Parameter) / CamParamInfoEx(Parameter)

This command gets information about the specified parameter.
CamParamInfoEx (available from 8.2.0 pf5) returns more detailed information in case of a list

parameter (Parameter type = 2) than CamParamInfo.

Example:
CamParamInfo(AdditionalTimeout)

Response:
0,acqparaminfo,AdditionalTimeout [sec]:,0,1,0,1800

or

Example2:
camparaminfo(setup,binning)

Response:
0,camparaminfo,Binning,2 x 2,2

The response consists of the following parts separated by commas:
Meaning Value
Errorcode 0

CommandName camparaminfo

Label Binning

Current value 2 x 2

Parameter Type 2

Minimum (numerical type only) 0

Maximum (numerical type only) 1800

The Parameter Type can have the following values:
0= Boolean Can have the values true or false. Valid entries are „true“ (true),

„false“ (false), „on“ (true), „off“ (false), „yes“ (true), „no“ (false), „0“
(false), or any other numerical value (true). On output only 0 (false)
and 1 (true) is used.

1= Numeric A numerical value. In the case of a numerical value the minimum and
maximum value is returned (But not for other parameter types).

2= List The value is one entry in a list.
3=String Any string can be used
4= ExposureTime An expression which evaluates to a time like „5ms“, „1h“, „1s“ etc.

Valid units are ns (nanosecond), us (microsecond), ms (millisecond), s
(second), m (minute), h(hour)

Note: In case of a list or an exposure time the number of entries and all list entries are returned in
the response of the CamParamInfoEx command.

CamGetLiveBG()

This command gets a new background image which is used for real time background subtraction
(RTBS). It is only available of LIVE mode is running. (New from 8.3.0)

External devices commands (HPD-TA only)
These commands refer to the HPD-TA only. They are not available in the HiPic.

DevParamGet(Location,Parameter)

This command gets the values of the camera parameters (See the meaning of these options in the
manual or help file)

Location can be one of the following:
TD Streak camera
Streak Streak camera
Streakcamera Streak camera
Spec Spectrograph
Spectrograph Spectrograph
Del Delaybox 1
Delay Delaybox 1
Delaybox Delaybox 1
Del1 Delaybox 1
Del2 Delaybox 2
Delay2 Delaybox 2
DelayBox2 Delaybox 2

Parameter can be every parameter which appears in the external devices status/control box. It

should be written as indicated in the Parameter name field.

Example:
DevParamGet(TD,Time Range)

Response:
0,DevParamGet,0.5 ns

or

DevParamGet(Spec,Wavelength)

Response:
0,DevParamGet,600

DevParamSet(Location,Parameter,Value)

This command sets the specified parameter of the acquisition options. Possible values for
Parameter are described above. When specifying a parameter value the value has to be written as

it appears in the corresponding control.

Example:
DevParamSet(TD,Mode,Operate)

Response:
0,DevParamSet

or

DevParamSet(Spec,Slit Width,20)

Response:
0,DevParamSet

DevParamInfo(Device, Parameter) / DevParamInfoEx(Device

,Parameter)

This command gets information about the specified parameter.
DevParamInfoEx (available from 8.2.0 pf5) returns more detailed information in case of a list

parameter (Parameter type = 2) than DevParamInfo.

Example:
DevParamInfo(TD,Time Range)

Response:
0,DevParamInfo,Time Range,0.5 ns,2

The response consists of the following parts separated by commas:
Meaning Value
Errorcode 0

CommandName DevParamInfo

Label Time Range

Current value 0.5 ns

Parameter Type 2

Minimum (numerical type only) 0

Maximum (numerical type only) 64

The Parameter Type can have the following values:
1= Numeric A numerical value. In the case of a numerical value the minimum and

maximum value is returned (But not for other parameter types).
2= List The value is one entry in a list.

Note: In case of a list the number of entries and all list entries are returned in the response of the
DevParamInfoEx command.

Example: DevParamInfoEx(TD,Time Range)
Response: 0,DevParamInfoEx,0,0,Time Range,5 ns,2,17,5 ns,10 ns,20 ns,50 ns,100 ns,200 ns,500
ns,1 us,2 us,5 us,10 us,20 us,50 us,100 us,200 us,500 us,1 ms
Meaning Value
Errorcode 0

CommandName DevParamInfoEx

ControlAvailable 0
StatusAvailable 0
Label Time Range

Current value 0.5 ns

Parameter Type 2

Number of entries 17

Entry 1 5 ns
Entry 2 10 ns
…
Entry 17 1 ms

DevParamsList(Device)

This command returns a list of all parameters of a specified device.
Example: DevParamsList(TD)
Response: 0,DevParamsList,11,Time Range,Mode,Gate Mode,MCP Gain,Shutter,Gate Time,Trig. mode,Trigger
status,Trig. level,Trig. slope,FocusTimeOver

Correction commands

CorParamGet(Location,Parameter)

This command gets the values of the correction options (See the meaning of these options in the
manual or help file)

Location can be one of the following:
Background Background Subtraction options dialog
Shading Shading correction options dialog
Curvature Curvature correction options dialog
DefectPixel Defect pixel correction options dialog

Parameter can be one of the following (Which of these parameters are relevant is dependent on

the detailed circumstance. Please refer to the respective correction options dialog):

When Location =Background (Background subtraction parameter)
BackgroundSource Source for Background subtraction
BackFilesForAcqModes Individual background files for every acquisition mode
LiveFile Correction file for Live mode
AcquireFile Correction file for Acquire mode
AIFile Correction file for Analog Integration mode
Constant Constant added during background subtraction
ClipZero Clip values to zero during background subtraction
Deleted:

RTBSSource

This feature has been deleted from version

8.1

Source for real-time background subtraction
AutoBacksub Auto backsub function

When Location =Curvature (Curvature correction parameter, refers to HPD-TA only)
CorrectionFile Curvature correction file
AutoCurvature Auto curvature correction function

When Location =DefectPixel (Defect Pixel correction parameter)
DefectCorrection Defect pixel correction function
DefectPixelFile Defect pixel correction file

When Location =Shading (Shading correction parameter)
ShadingFile Image file used for shading correction

ShadingConstant Defines how to calculate the constant during shading correction

AutoShading Auto shading correction function
SensitivityCorrection Sensitivity correction function
LampFile Lamp file for Sensitivity correction function

CorParamSet(Location,Parameter,Value)

This command sets the specified parameter of the acquisition options. Possible values for
Parameter are described above. When specifying a parameter value the value has to be written as

it appears in the corresponding control.

CorParamInfo(Parameter) / CorParamInfoEx(Parameter)

This command gets information about the specified parameter.

CorParamInfoEx (available from 8.2.0 pf5) returns more detailed information in case of a list

parameter (Parameter type = 2) than CorParamInfo.

CorDoCorrection(Destination,Type)

This command performs a correction on the specified image.
Destination can be one of the following:
Current The currently selected image

A number from 0 to 19 The specified image number

Type can be one of the following:
Backsub Background subtraction

Shading Shading correction
Curvature Curvature correction
BacksubShading Background subtraction + Shading correction
BacksubCurvature Background subtraction + Curvature correction
BacksubShadingCurvature Background subtraction + Shading correction + Curvature

correction

Example:
CorDoCorrection(Current,Backsub)

Response:
0,CorDoCorrection

Note: The corrections can also be applied to an image containing a sequence. In this case the
correction is applied to all images in the sequence.

Defect pixel tool commands
(all these commands are available from version 8.3.0)

These commands can be used to get defect pixel coordinates from dark and light reference files and
cooperate together with the defect pixel tool.

DefPixParamGet(Parameter)

This command gets the values of the correction options (See the meaning of these options in the
manual or help file)

Parameter can be one of the following:

Method Defines whether files for hot, dead or hot and dead pixels are

used to calculate the coordinates of defects. See also the
DefPixSetType command.

ImageHotPixel Image file for hot pixels (dark/background file). See also
DefPixLoadHot command.

AverageHotPixel Average in the hot pixel file.
StandDevHotPixel Standard deviation in the hot pixel file.
ThresholdHotPixels Threshold to apply to the hot pixel file to find single defective

pixels.
ThresholdHotLines Threshold to apply to the hot pixel file to find defect lines or

columns. Works only in combination with
LineColumnsPercentage.

ImageDeadPixel Image file for dead pixels (dark/background file), see also
DefPixLoadDead command.

AverageDeadPixel Average in the dead pixel file.
StandDevDeadPixel Standard deviation in the dead pixel file.
ThresholdDeadPixels Threshold to apply to the dead pixel file to find single

defective pixels.
ThresholdDeadLines Threshold to apply to the dead pixel file to find defect lines or

columns. Works only in combination with
LineColumnsPercentage.

NrDefectPixels Number of defective single pixels found.
NrDefectLines Number of defective lines found.
NrDefectColumns Number of defective columns found.
NrDefectOverflowLines Number of defective overflow lines found.
NrDefectOverflowColumns Number of defective overflow columns found.
OvlLinColFactor Correction factor for overflow lines or columns.
NrUncorrectable Number of uncorrectable pixels found

DefPixParamSet(Parameter,Value)

This command sets the specified parameter of the defect pixel tools. Possible values for
Parameter are described above. When specifying a parameter value the value has to be written as

it appears in the corresponding control.

DefPixParamInfo(Parameter) / DefPixParamInfoEx(Parameter)

This command gets information about the specified parameter.
DefPixParamInfoEx returns more detailed information in case of a list parameter (Parameter

type = 2) than DefPixParamInfo.

DefPixCalculate()

This command calculates the coordinates of defective single pixels, defective lines or columns or
overflow lines or columns as a result of the input values.

DefPixShow()

This command shows the defects found previously as overflow values in a separate image (the
modified hot or dead file is used to display the defects).

DefPixSave(sFile)

This command saves the coordinates found previously in an INI file. sFile is the filename of the INI
file.

DefPixSaveActivate(sFile)

This command saves the coordinates found previously in an INI file and sets this file to the
currently active defect pixel file and activates the defective pixel correction (See also the options in
the defective pixel correction options dialog). sFile is the filename of the INI file.

DefPixLoadHot(sFile)

This command loads the specified file as the hot pixel file. Please be sure to specify Method first

or execute the command DefPixSetType. sFile is the filename of the hot pixel file. Use this
command instead of the parameter ImageHotPixel if you want to calculate the image properties

of the hot pixel file (average, standard deviation) and the suggested thresholds.

DefPixLoadDead(sFile)

This command loads the specified file as the hot pixel file. Please be sure to specify Method first

or execute the command DefPixSetType. sFile is the filename of the dead pixel file. Use this
command instead of the parameter ImageDeadPixel if you want to calculate the image

properties of the dead pixel file (average, standard deviation) and the suggested thresholds.

DefPixSetType(sType)

This command specifies whether files for hot, dead or hot and dead pixels are used to calculate the
coordinates of defects. See also the parameter Method.
If sType contains the word “hot” hot files can be used. If sType contains the word “daed” hot files
can be used. If sType contains the word “hot” and “dead”, hot and dead files can be used.

Image commands

ImgParamGet(Parameter)

This command gets the values of the image options (See the meaning of these options in the manual
or help file)
Parameter can be one of the following:
AcquireToSameWindow Acquire always to the same window
DefaultZoomFactor Default zooming factor
WarnWhenUnsaved Warn when unsaved images are closed
Calibrated Calibrated (Quickprofiles, Rulers, FWHM)
LowerLUTIsZero Force the lower LUT limit to zero when executing auto LUT
AutoLUT AutoLut function
AutoLUTInLive AutoLut in Live mode function
AutoLUTInROI Calculate AutoLut values in ROI
HorizontalRuler Display horizontal rulers
VerticalRuler Display vertical rulers
FixedITEXHeader Save ITEX files with fixed header

ImgParamSet(Parameter,Value)

This command sets the specified parameter of the quick profile options. Possible values for
Parameter are described above.

ImgParamInfo(Parameter) / ImgParamInfoEx(Parameter)

This command gets information about the specified parameter.
ImgParamInfoEx (available from 8.2.0 pf5) returns more detailed information in case of a list

parameter (Parameter type = 2) than ImgParamInfo.

Example:
ImgParamInfo(Calibrated)

Response:
0,ImgParamInfo,1 (Calibrated was set to true)

ImgSave(Destination,ImageType,FileName,Overwrite)

Destination can be one of the following:
Current The currently selected image

A number from 0 to 19 The specified image number

ImageType can be one of the following:
IMG ITEX image

TIF TIFF image
TIFF TIFF image
ASCII ASCII file
data2tiff Data to tiff
data2tif Data to tiff
display2tiff Display to tiff
display2tif Display to tiff

FileName can be any valid filename. This function can also save images on a network device, so

it can transfer image data from one computer to another computer.

Overwrite can be either true or false. This is an optional parameter. If this is set to true (or 1) the

file is also saved if it exists. If the parameter is omitted or is set to false (or 0) the file is not saved if
it already exists and an error is returned.

ImgLoad(ImageType,FileName)

ImageType and FileName are values described above. Please not that not all file types which

can be saved can also be loaded. Some file types are intended for export only.
Note: This load functions loads the image always into a new window independently of the setting of
the option AcquireToSameWindow. If the maximum number of windows is reached an error is

returned.
Response:
0,ImgLoad,ImageNumber

ImageNumber is the image number of the image loaded.

ImgDelete(Destination)

Destination can be one of the following:
Current The currently selected image

A number from 0 to 19 The specified image number
All Deletes all images

Note1: This function deletes the specified images independent whether their content has been saved
or not. If you want to keep the content of the image please save the image before executing this
command.
Note2: This function does not delete images on hard disk.

ImgStatusGet()

The ImgStatusGet function retrieves information of the image status of a specified image. The

image status is a part of the image header containing information about the circumstances of how
the image has been created. It can have the following syntax:
ImgStatusGet(Destination,All)

ImgStatusGet(Destination,Section,Sectionidentifier)

ImgStatusGet(Destination, Token,Sectionidentifier,Tokenidentifier)

Destination can be one of the following:
Current The currently selected image

A number from 0 to 19 The specified image number

Type can be one of the following:
All The full image status is returned

Section A specified section is returned
Token A specified Token within a specified section is returned

Sectionidentifier,Tokenidentifier are valid Sectionidentifiers and Tokenidentifiers.

Example:
ImgStatusGet(Current,Token,Application,Date)

Response:
0,ImgStatusGet,04-07-2006

Note1: Even though the commands and parameters are generally case insensitive, Sectionidentifiers

and Tokenidentifieres have to be specified as they appear in the image status, thus specifying
Application will return a valid section but application will not.
Note2: Even though the image status may contain <CR> and <LF> characters these are removed
before the status is returned.

ImgStatusSet(Destination,Token,Sectionidentifier,Tokenidentifier)

The ImgStatusSet writes tokens to the specified sections.
Destination, Sectionidentifier and Tokenidentifier have the same meaning

as described above.
This command can also write new tokens and new sections, this it can be used to add user specific
information to the images.
Note: Care has to be taken if existing tokens are modified. Some of the tokens are essential and
should not be modified.

ImgDataInfo(Destination, DataType)

This function returns information about the current image data.

Destination can be one of the following:
Current The currently selected image

A number from 0 to 19 The specified image number

Currently only Size can be specified as the DataType.

This command returns the image size in pixels and the Bytes per pixel of a single pixel. It returns:
0,ImgDataInfo,iX,iY,iDX,iDY,BPP

where

iX X-Offset

iY Y-Offset

iDX Horizontal size in pixels

iDY Vertical size in pixels

BPP Bytes per Pixel

Example:
ImgDataInfo(Current, Size)

Response:
0,ImgDataInfo,0,0,1024,1024,2

ImgDataGet(Destination,Type)

This command get image, display or profile data of the select image.

Destination can be one of the following:
Current The currently selected image

A number from 0 to 19 The specified image number

Type can be one of the following:
Data The image raw data (1,2 or 4 BBP)

Display The display data (always 1 BBP)
Profile A profile is returned (4 bytes floating point values)

The image data is transferred by the optional second TCP-IP channel. If this channel is not available
an error is issued.

If Profile is selected for Type the syntax is:
ImgDataGet(Destination,Type,Profiletype,iX,iY,iDX,iDY)

where Profiletype has to be one of the following:

1=Line profile
2=Horizontal profile (integrated)
3=Vertical profile(integrated)

iX,iY,iDX,iDY are the coordinates of the area where to extract the profile.

The response is:
0,ImgDataGet,iDX,iDY,BBP,Type (Data,Display)

0,ImgDataGet,NumberOfData,Type (Profile)

Example:
ImgDataGet(current,data)

Response:
0,ImgDataGet,1024,1024,2,0

ImgDataDump(Destination,Type,filename)

This command get image or display data of the select image and writes it to file (only binary data,
no header). It can be used to get image or profile data alternatively to using the second TCP-IP port.

Destination can be one of the following:
Current The currently selected image

A number from 0 to 19 The specified image number

Type can be one of the following:
Data The image raw data (1,2 or 4 BBP)

Display The display data (always 1 BBP)
Profile A profile is returned (4 bytes floating point values)

The image data is transferred by the optional second TCP-IP channel. If this channel is not available
an error is issued.

File can be any valid file name including files on network devices.

If Profile is selected for Type the syntax is:
ImgDataGet(Destination,Type,Profiletype,iX,iY,iDX,iDY,filename)

where Profiletype has to be one of the following:

1=Line profile
2=Horizontal profile (integrated)
3=Vertical profile(integrated)

iX,iY,iDX,iDY are the coordinates of the area where to extract the profile.

The response is:
0,ImgDataDump,iDX,iDY,BBP,Type (Data,Display)

0,ImgDataDump,NumberOfData,Type (Profile)

Example:

ImgDataDump(current,data,c:\test.dat)

Response:
0,ImgDataDump,1024,1024,2,0

ImgRingBufferGet(Type,SeqNumber,filename)

This command get image or profile data of the select image. This command can be used only in
combination with AcqLiveMonitor(RingBuffer,NumberOfBuffers). As soon as

AcqLiveMonitor with option RingBuffer has been started the data of every new live image is
written to a ring buffer and a continuously increasing sequence number is assigned to this data. As
long as the image with this sequence number is still in the buffer it can be accessed by calling
ImgRingBufferGet(Type,SeqNumber). If SeqNumber is smaller then the oldest remaining live
image in the sequence buffer, the oldest live image is returned together with its sequence number. If
SeqNumber is higher than the most recent live image in the buffer an error is returned.

Type can be one of the following:
Data The image raw data (1,2 or 4 BBP)

Profile A profile is returned (4 bytes floating point values)

SeqNumber is the sequence number of the image to get
Filename (optional) File where to write to data to. Raw data is written to the file without any
header.
If a file name is specified the date is written to this file (same as with ImgDataDump). If no file
name is written the image data is transferred by the optional second TCP-IP channel. If this channel
is not available an error is issued.

If Profile is selected for Type the syntax is:
ImgRingBufferGet(Profile,Profiletype,iX,iY,iDX,iDY,seqnumber,file)

where Profiletype has to be one of the following:

1=Line profile
2=Horizontal profile (integrated)
3=Vertical profile(integrated)

iX,iY,iDX,iDY are the coordinates of the area where to extract the profile.

The response is:
0,ImgRingBufferGet,iDX,iDY,BBP,Type,seqnumber (Data,Display)

0,ImgRingBufferGet,NumberOfData,Type,seqnumber (Profile)

Example:
ImgRingBufferGet(data,125)

Response:
0,ImgRingBufferGet,1024,1024,2,0,125

Quick profile commands

QprParamGet(Parameter)

This command gets the values of the quick profile options (See the meaning of these options in the
manual or help file)
Parameter can be one of the following:
UseMinAsZero Use Minimum as zero FWHM calculation
DisplayQPOutOfImage Display the Quick profile outside of the image
QPRelativeSpace Relative space for Quick profile
DisplayDirectionForRect Direction for the display of rectangular ROIs
AdjustQPHeight Adjustment criterion for the Height of the quick profile
DisplayFWHM Display FWHM
FWHMColor Color of FWHM number
FWHMSize Size of FWHM number
FWHMNoOfDigits Number of digits for FWHM number

QprParamSet(Parameter,Value)

This command sets the specified parameter of the quick profile options. Possible values for
Parameter are described above.

QprParamInfo(Parameter) / QprParamInfoEx(Parameter)

This command gets information about the specified parameter.
QprParamInfoEx (available from 8.2.0 pf5) returns more detailed information in case of a list

parameter (Parameter type = 2) than QprParamInfo.

Example:
QprParamInfo(QPRelativeSpace)

Response:
0,QprParamInfo,20 (The relative space for the quick profile is 20%)

LUT commands

LutParamGet(Parameter)

This command gets the values of the Lut options (See the meaning of these options in the manual or
help file)
Parameter can be one of the following:
Limits Limits of the LUT control. Three values are returned (upper and

lower limit and multiplication factor)
Cursors Cursors of the LUT control. Two values are returned (upper and

lower cursor and multiplication factor)
Color Lut color
Inverted Inverted
Gamma Gamma factor
Linearity Linearity
Overflowcolors Overflow colors (superimposed images only)

LutParamSet(Parameter,Value)

This command sets the specified parameter of the Lut options. Possible values for Parameter

are described above.

In case of Cursors two values have to be set. The parameter Limits cannot be set.

LutParamInfo(Parameter) / LutParamInfoEx(Parameter)

This command gets information about the specified parameter.
LutParamInfoEx (available from 8.2.0 pf5) returns more detailed information in case of a list

parameter (Parameter type = 2) than LutParamInfo.

LutSetAuto()

This command executes the AutoLut functions. Three parameters are returned (upper and lower
cursor and multiplication factor).

Sequence commands

SeqParamGet(Parameter)

This command gets the values of the Sequence options or parameters (See the meaning of these
options or parameters in the manual or help file)
Parameter can be one of the following:

From options
AutoCorrectAfterSeq Do auto corrections after sequence
DisplayImgDuringSequ

ence
Always display image during acquisition

PromptBeforeStart Prompt before start
EnableStop Enable stop
Warning Warning on
EnableAcquireWrap Enable wrap during acquisition
LoadHISSequence Load HIS sequences after acquisition
PackHisFiles Pack 10 or 12 bit image files in a HIS file
NeverLoadToRAM Do not attempt to load a sequence to RAM
LiveStreamingBuffers Number of Buffers for Live Streaming
WrapPlay Wrap during play
PlayInterval Play interval
ProfileNo Profile number for jitter correction
CorrectionDirection Jitter Correction direction

From Acquisition Tab
AcquisitionMode Acquisition mode
NoOfLoops No of Loops
AcquisitionSpeed Acquisition speed (full speed / fixed intervals)
AcquireInterval Acquire interval
DoAcquireWrap Do wrap during acquisition

From Data storage Tab
AcquireImages Store images
ROIOnly Acquire images in ROI
StoreTo Data storage
FirstImgToStore File name of first image to store
DisplayDataOnly Store display data (8 bit with LUT)
UsedHDSpaceForCheck Amount of HD space for HD check
AcquireProfiles Store profiles
FirstPrfToStore File name of first profile to store

From processing Tab
AutoFixpoint Find Fixpoint automatically
ExcludeSample Exclude the current sample

From general sequence dialog
SampleType Sample type
CurrentSample Index of current sample

SeqParamSet(Parameter,Value)

This command sets the specified parameter of the Sequence options or parameters. Possible values
for Parameter are described above.

SeqParamInfo(Parameter) / SeqParamInfoEx(Parameter)

This command gets information about the specified parameter.
SeqParamInfoEx (available from 8.2.0 pf5) returns more detailed information in case of a list

parameter (Parameter type = 2) than SeqParamInfo.

SeqStart()

Starts a sequence acquisition with the current parameters. Please note that any sequence which
eventually exist is overwritten by this command.

SeqStop()

Stops the sequence acquisition currently under progress.

SeqStatus()

Returns the current sequence status.
Response:
0,SeqStatus,idle (no sequence acquisition under progress)

0,SeqStatus,busy,PendingAcquisition (sequence acquisition under progress)

PendingAcquisition can be either Sequence Acquisition, Live Streaming,

Save Sequence, Load Sequence or No sequence related async command:
command

SeqDelete()

Deletes the current sequence from memory.
Note: This function does not delete a sequence on the hard disk.

SeqSave(ImageType,FileName,Overwrite)

ImageType,FileName,Overwrite are same as described under ImgSave().

SeqLoad(ImageType,FileName)

ImageType,FileName are same as described under ImgLoad().

Response:
0,SeqLoad,ImageNumber

ImageNumber describes the image number of the sequence image.

Using Script files

General
The RemoteEx program can run script files. For this purposes it uses a script engine which is
provided in two DLLs (ScrEngUI.dll and ScrptEng.dll). The Syntax of this script language is
described in the file ScriptConstruction40305A_US.xls. The script language can call three different
types of commands:

1.) Keywords of the script language itself (like “For”, “Next”, “dim”, “CStr” and the like)
2.) Commands of the RemoteEx command set (like “AppStart(), CamParamSet()” etc.)
3.) Command provided from the RemoteEx which are provided for the Script language only

(like IsEqual or Format or JoinPathAndFileName)

To run a scrip file click to the Open Script pushbutton

The ScriptFile Editor will appear:

With this Script editor you can Load and Save Script files, execute the script files either in steps or
continuously and edit your scripts. While executing the script the commands are transferred to the
HiPic or HPDTA and are executed. If the Application has been started visible you can observe the
progress of the script as well as on the script editor, the RemoteEx and the HiPic or HPDTA
windows.

Special functions provided for the Script

Format(expression,format)

This function returns a formatted number, where expression is the number and format the format
specifier.

Example:
Format(1,”0000”)
Return Value: “0001”

Format specifier

Symbol Description

0 Digit placeholder; prints a trailing or a leading zero in this position, if
appropriate.

Digit placeholder; never prints trailing or leading zeros.

. Decimal placeholder.

, Thousands separator.

– + $ () space Literal character; characters are displayed exactly as typed into the format
string.

Examples:

Format syntax Result

Format (8315.4, "00000.00") 08315.40

Format (8315.4, "#####.##") 8315.4

Format (8315.4, "##,##0.00") 8,315.40

Format (315.4,"$##0.00") $315.40

You can also use named formats as follows

Named Format Description

General Number Displays number with no thousand separator.

Currency Displays number with thousand separator, if appropriate; display two
digits to the right of the decimal separator. Output is based on user's
system settings.

Fixed Displays at least one digit to the left and two digits to the right of the
decimal separator.

Standard Displays number with thousand separator, at least one digit to the left and
two digits to the righseparator.

Percent Multiplies the value by 100 with a percent sign at the end.

Scientific Uses standard scientific notation.

See the MSDN Library documentation for more information about formatting numbers.

StrVal(sValue)

This function returns the value represented by the string sValue. Both comma and decimal point is
accepted as the decimal delimiter.

StrLeft(iCount,String)

This function returns iCount characters of the left side of String.

StrRight(iCount,String)

This function returns iCount characters of the right side of String.

StrLen(String)

This function returns the length of String in characters.

WriteToFile(FilePath,iMode,sData)

This function writes the string sData to the file Filepath and adds a < CR > <LF>. The string sData
can contain commas as well. The function behaves different according the value of iMode:
0=Write to file but don't overwrite if file exits
1=Write to file and overwrite if file exist
2=Append to file (create if not exist)

JoinPathAndFileName(Path,File)

This function joins a path and a file statement with eventually adding a backslash if necessary.

IsEqual(String1, String2)

This function performs a text based compare and the two strings. If they are equal (case insensitive)
the function returns 1 if not it returns 0.

GetResponseString()

This function returns the complete string which has been returned by the previous application
command.

GetResponseCountLong()

This function returns the number of parameters which has been returned by the previous application
command.

GetResponseParmString(Index)

This function returns a single parameter (specifying the index of the parameter with the parameter
Index) which has been returned by the previous application command in string format.

GetResponseParmBool(Index)

This function returns a single parameter (specifying the index of the parameter with the parameter
Index) which has been returned by the previous application command in bool format.

GetResponseParmByte(Index)

This function returns a single parameter (specifying the index of the parameter with the parameter
Index) which has been returned by the previous application command in byte format.

GetResponseParmLong(Index)

This function returns a single parameter (specifying the index of the parameter with the parameter
Index) which has been returned by the previous application command in Long format.

Sample Script files

To learn how to use the Scrip language and how to use the RemoteEx as a total there are several
script sample files. The samples uses the following functions:

Sample File Topic Used Functions

AcqParms.hsc Set and get Acquisition
parameters

Appstart, AcqParamGet, GetResponseParmString,
AcqParamInfo, GetResponseParmLong,
AcqParamSet

AcquireAndSave.hsc Acquire Images and save
them

Appstart, Appinfo, GetResponseParmString,
CamParamSet, ImgParamSet, Acqstart, Format,
JoinPathAndFileName, imgsave, Acqstatus,
GetResponseParmString, IsEqual

AppInfo.hsc Get Information about the
application

AppInfo, GetResponseParmString, Appstart

Background.hsc Execute background
correction

Appstart, Appinfo, GetResponseParmString,
CamParamSet, ImgParamSet, Acqstart,
JoinPathAndFileName, imgsave, CorParamSet,
CorDoCorrection, LutSetAuto, Acqstatus, IsEqual

CamParms.hsc Set and get Camera
parameters

Appstart, CamParamGet, GetResponseParmString,
CamParamInfo, CamParamSet

ImageStatus.hsc Gets and modifies the Image
status

Appstart, Appinfo, GetResponseParmString,
CamParamSet, ImgParamSet, Acqstart,
ImgStatusGet, ImgStatusSet, ImgDataInfo, StrLen,
StrRight, JoinPathAndFileName, WriteToFile,
Acqstatus, IsEqual

Sequence.hsc Uses Sequence acquisition Appstart, Appinfo, GetResponseParmString,
SeqParamSet, Seqstart, JoinPathAndFileName,
seqsave, Seqstatus, IsEqual

StartAndStop.hsc Starts and Stops the
application

AppStart, Acqstart, AppEnd, Acqstatus,
GetResponseParmString, IsEqual

RemoteExClient sample

General
Basically it is the target of the RemoteEx to give the user a possibility to use the HiPic or HPD-TA
from his application. Therefore it is the intention that the client program is always a code which is
made by the customer under his responsibility. However, during evaluation and development it may
be helpful to have a sample program which does some of the tasks which later on will be done by
the customer’s client program.
Therefore the program RemoteExClient.exe is provided with the HiPic or HPD-TA. It is strictly
speaking not part of the RemoteEx program and we do not guarantee its proper operation.
The upper part of this dialog deals with general initialization and sending commands individually
(see below screen shot), whereas the lower part provides some samples of how to transfer data to
the client.

TCP-IP ports and sending commands
In the upper part of the RemoteExClient program (shown above) the user can input the host name
and TCP-IP port number of the main communication TCP-IP communication and optional the TCP-
IP port number for data exchange.
The edit box labeled “command” can be used to enter commands which can be sent to the
RemoteEx with the “Send” or “Send & Wait” pushbutton. The “Send & Wait” waits until the
correct response is returned from the RemoteEx. To make live more easy a small set of commands
are already placed in the Edit/Dropdown Combination field (see following screenshot).

Responses and Messages are displayed below the command line.

Transferring profile data

One task which can be done is to transfer profile data to the client program. This can be done by
using the pushbutton “Start LIVE and Display profile” (see screenshot).
If the second TCP-IP port is connected, data is transferred by this port. If this port is not connected
data is transferred by saving it to a file in the RemoteEx program and loaded by the client program.
In principle the following RemoteEx commands are used

AppStart(Live) (start the live mode)

AcqLiveMonitor(Notify) (Start Live monitor to notify whenever a new live

image appears)
ImgDataGet(Current,Profile,2,0,0,256,256) (Get horizontal profile data)

If the program should continuously process profile data it is recommended to get a new profile data
whenever a new message from the AcqLiveMonitor(Notify) has arrived.
The sample program displays the profile data whenever a new profile has been arrived.
When no TCP-IP connection is available data save is done by the following command instead:

ImgDataDump(Current,Profile,2,0,0,256,256,C:\program

files\hipic\hipic820\RemoteEx_Reserved_Imagefile.dat)

Showing LIVE display

If display data should be transferred in real time the following commands can be used:

ImgDataGet(Current,Display) (use TCP-IP second port) or
ImgDataDump(current,display,C:\program

files\hipic\hipic820\RemoteEx_Reserved_Imagefile.dat) (use file save and

load method)

The image display data is immediately displayed on the client dialog by the sample program.

Transferring profile or image data with ring buffer

The previous methods always get the latest available image, where it is irrelevant whether all
frames are transferred or not.
If, however, it is important that data of all frames are transferred to the client a ring buffer can be
setup at the RemoteEx and the data of every frame can be requested individually. Of course this
works only if the speed of the network is fast enough to transfer all data.

For this purpose the Live Monitor option RingBuffer can be used. In this mode the RemoteEx
application copies all data to a ring buffer of the specified number of buffers once Live mode has
been started. If all buffers are filled the RemoteEx starts to write data to the first buffer. A global
counter (we call it “seqnumber”) is maintained which is increased by one with every new live
image. This counter is then associated with the buffer where the data is stored. This counter starts
from zero if AcqLiveMonitor(RingBuffer)is called or if the acquired image size changes (Because
the buffers have to be reallocated). By using seqnumber the client program has access to all images
which are not yet overwritten.
Example: If the number of buffers is 10 then the images 0 to 9 are written to buffers 0 to 9. After
this data write restart with buffer zero, which means that Buffer 0 is overwritten by image 10 and so
on. The following diagram shows this mechanism.

SeqNr 0 1 2 3 4 5 6 7 8 9

Buffer 0 1 2 3 4 5 6 7 8 9

SeqNr 10 11 12 13 14 15 16 17 18 19

Buffer 0 1 2 3 4 5 6 7 8 9

SeqNr 20 21 22 23

Buffer 0 1 2 3 4 5 6 7 8 9

In our Example the current situation is now as follows:
The last Acquired Image is in Buffer 3 and has the SeqNumber 23. Images 14 to 23 are still
available to get. Data from Live Image Nr 18 for example can now be transferred to the client with
the following command:

imgRingBufferGet(Data,18) or
imgRingBufferGet(Profile,2,0,0,256,256,18)

if a file name is specified after the seqNumber parameter the data is saved to a file like in the
following examples:

imgRingBufferGet(Data,18, C:\program

files\hipic\hipic820\RemoteEx_Reserved_Imagefile.dat) or
imgRingBufferGet(Profile,2,0,0,256,256,18,C:\program

files\hipic\hipic820\RemoteEx_Reserved_Imagefile.dat)

High speed data transfer

Please note that all memory transfer functions are using an ActiveX communication to transfer data
from the application to the RemoteEx which is considerably slower then copying data inside the
same process space. Therefore this function may not result in the desired frame rates if a high speed
camera is used (like the Hamamatsu C9300). If you need to acquire data with much higher frame
rate it is recommended to use the sequence functions of the main application (which can be started
from the RemoteEx client) or the user function (which has direct access to the image memory).

Identifying the Host name
There are several ways to identify the remote computers name.
One is to go to Network connection and select Network-identification.

Then the dialog system “properties appears” and you can see the computer’s name.

Another way to do so is to go to My Computer and select show “system informations”.

To use the RemoteEx on the same computer the host name “localhost” can always be used.

