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square plate when the inner electrode has different positions represented by
A = 20z5/a = 20y,Ja = 1, 2, 8, 4, and §.

A 1 2 3 4 5

47808 | 4'7284 | 4:6412 | 4'5177 | 4°3539
36803 | 36267 | 3'5380 | 34129 | 32472

For any value of b/a the resistance decreases as the inner electrode is
moved from the centre towards an edge. It decreases also in the case of
the square plate when the inner electrode is moved from the centre towards
a corner. The effect on the resistance is relatively greater, however, when
the radius of the inner electrode is increased; it is true, for all values of b/«
and for all the electrode positions considered here, that the resistance is
reduced by about one-quarter when the small radius is trebled. On the
other hand, a movement of the electrode from the centre of the plate to
a point half-way between the centre and one of the longer edges (a move-
ment of 30 diameters when & = 1/450) causes a fall in the resistance of less
than one-twelfth.
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SUMMARY

This note describes one- and two-parameter families of solutions of steady
rotationally-symmetric viscous flow. The solutions are such that the Navier-Stokes
cquations reduce to ordinary differential equations in a single position variable.
I'he: one-parameter family represents flow which is rigid-body rotation at infinity
and over a plane through the origin ; the solution given by von Kirmin in 1921 is
o inember of this family. The two-parameter family represents {low which is rigid-
lunly rotation over each of two planes at a finite distance apart. The case of large
[2vnolds number is particularly interesting, since the two bounding planes are then
ey srated by a region of rigid-body rotation and translation in which viscous effects
are negligible.

[ntroduction
" v. KArMAN (1) has pointed out a simple solution of the Navier—Stokes
cquations of motion which deseribes the steady flow of a viscous fluid in
. somi-infinite region bounded by an infinite rotating disk. This ‘solution’
i~ not yet given analytically, since one is left with two ordinary non-linear
illerential equations in a single independent variable which must be solved
munerically, but to have carried a solution of the Navier—Stoles equations
eyven so far by exact analysis was (and still is) something of a novelty.
Morcover, the solution has the very interesting property that it is also a
solution of the appropriate boundary-layer equations, the terms neglected
in boundary-layer theory being identically zero for this type of motion.
The purpose of this note is to show that there are one- and two-parameter
limilies of solutions having the particular mathematical simplicity of Kar-
main’s solution; Kdrméan’s solution is one member of the one-parameter
frnily. In Kdrméan’s problem the flow far from the disk is assumed to be
wholly normal to the disk and to be induced by the rotution of the disk.
I ceneral, if other conditions far from the disk are assumed, the particular
=implicity of Kédrman’s solution is lost, but it will be shown below that the
simple form of the solution is retained if the fluid at infinity has an arbi-
trary uniform angular velocity y about the axis of rotation of the disk. If w
i~ thi ungular velocity of the disk, there is found to be a solution for each
e of y/w between —oo and +oco. Karmén’s solution corresponds to
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ylw = 0, whereas y/w = Foo describes a flow which is rotating uniformly
at infinity and which is bounded by a stationary disk. In this latter case
there is thus the opportunity of describing quantitatively the tendency for
particles of sugar to migrate to the centre of a cup of tea which has been
stirred. The qualitative explanation (2) of this phenomenon is well known,
of course; the new point is that the flow away from the disk induced by the
rotation is uniform over planes parallel to the disk, just as the flow towards
the disk is uniform over these planes in Karmén’s problem.

A two-parameter family of solutions of the same simple type describes
the flow between two' parallel infinite disks which are rotating about the
same axis with different angular velocities; in addition to the ratio of the
angular velocities of the disks, the Reynolds number based on the distance
bet een the disks is now a relevant parameter. A numerical method of
determining the flow field in the special case in which one disk is stationary
and the Reynolds number of rotation of the other disk is small has recently
been described by Casal (3).

A family of solutions of related type has been described by Miss Hannah
(4). This family is obtained by combining the flow towards the disk pro-
duced by a source at infinity on the axis of rotation with the rotating flow
induced by the disk. Karman’s solution is obtained when the source-flow
is made zero, and, at the other limit, if the disk is stationary the viscous
stagnation-point solution described by Homann (5) is recovered. This
family of solutions will not be included in the following discussion.

The governing equations
If v,, vy, v, are velocity components in the directions of increase of cylin-
drical polar coordinates r, 8, z, and p is the pressure, the Navier-Stokes
equations of steady motion of a fluid of density p which is symmetrical
about the axis » = 0 are as follows:
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The continuity equation is

g
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The plane z = 0 is identified with the plane of a uniformly rotating disk
(angular velocity w) so that one set of boundary conditions is

z=0, (5)

The other set of boundary conditions will depend on the problem under

discussion; if the fluid is unbounded in the z-direction the conditions to

be assumed are

v, = v, =0, V9 = wr, at

>0, vg—>y7r, as z-—>o0, (6)

whereas if there is a second rotating disk at z = d the conditions are
vg=1yyr, at z=d, (7)
where y;, v, and d are disposable constants. This excludes Miss Hannah’s
family of solutions, which give a radial velocity at z = oo, but it includes
the one- and the two-parameter families mentioned in the introduction.
The simple property of Kérman’s solution and of the solutions sought

herein is that the flow normal to the disk is uniform over planes parallel
to the disk. That is,

'UZZU,.:O,

v, = 0,(2),
and as a consequence, from (4), and assuming that v, is finite at » = 0,

b e
o aa )

Equation (3) can then be integrated to give

plp =2y i, )

From equation (1) we find that the arbitrary function II(r) satisfies
1 dIl(r)

= function of z only.

The boundary condition (5) then requires
II(r) = §r¥(w+o), (10)
where ¢ is a constant, so that
vg/r = function of z only. (11)
Equations (1) and (2) then become

1dv, d*, Y a®
S Rt e v aty,
(2 dz) 2% I (r) 2+c)_§ dz? La

dv, v d(vg/r) d?(vg/r)
and e 0 i el o4 (J
dz r B ki - i 9

.Tn the case of the semi-infinite fluid with boundary conditions (5) and
(6), the asymptotic form (as z — c0) of (12) is

c=yi—w? (14)
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and only five boundary conditions are needed for the solution of (12) and
(13). These are supplied by (5) and (6), the uniform axial velocity V at
z = co being determined as part of the solution. In the case of the two
rotating disks all six of the boundary conditions (5) and (7) are needed to
solve (12) and (13) and to determine the constant c.

The form of solution which has been assumed is still valid when there
is a uniform suction through the surface of either or both of the disks, the
boundary condition v, = 0 being then replaced by v, = a prescribed con-
stant. Suction through the surface of the disks will give rise to some
interesting modifications of the flow patterns described below, but will not
be considered further.

The variables may be made non-dimensional by using (vw)! as a reference
velocity and (v/w)t as a reference length, the direction of positive rotation
being so chosen that w is always positive. Put

r= (o), 2= (@B,  vy= w)iygl)

in which case equations (12) and (13) become

v, = (vw)h(0),

2

2
w

Ihyh —g? — —(‘” J’”)ﬁ%h’", (5

—gh'+g'h=g", (16)
where dashes denote differentiation with respect to {. The boundary con-

ditions are now A il e B an

and, for the semi-infinite fluid (in which case ¢ = yj—w?),
B =0, g—yfw, as (-0, (18)
or, for the fluid between two rotating disks,

LIS
Bl iag e ol g z;=(d_‘i’>2.
14

(19)

Numerical integration of equations (15) and (16) by the method used
by Miss Hannah (4), and by Cochran (6) in the case of Karman'’s problem,
would probably be feasible, but tedious. Interest lies more in the general
form of the solutions than in the numerical details so that only general
observations about the streamlines in typical cases are presented here.
The author has no evidence for the conclusions stated, other than that
mentioned explicitly.

Streamlines of the flow bounded by a single disk

Consider first the family of solutions given by the boundary conditions
(18). There is one member of this family for each value of y;/w between
—o0 and oo, and for each member there is an appropriate value of V, the
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axial velocity far from the disk. The members of the family may be divided
into three classes within each of which the streamlines have much the same
appearance.

Class (@). 00 > yifw > 1

The rotational velocity at the disk is, in this case, smaller than at any
other point in the field so that the inward radial pressure gradient imposed

<
~

rn

o > ‘x'/w > 1
Fi1c. 1

by the fluid at infinity is more than sufficient to keep the fluid near the
disk moving in circles. Hence there is a radial flow inwards at points near
the disk and an axial flow away from the disk (see Fig. 1; in: this and other
figures the streamlines refer, of course, to components of the motion in an
axial plane only). At one end of the range y;/w = oo, corresponding to
a stationary disk and giving an approximation to the tea-cup flow, and
at the other extreme y,/w = 1, corresponding to uniform rotation of the
whole fluid with no axial motion.

Class (b). 1 = yyfw =0

The angular velocity at the disk is here a maximum and the rotation is

everywhere in the same direction, so that the axial velocity is towards the
590213 D
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disk (Fig. 2). The disk acts as a centrifugal fan, throwing fluid out radially
and drawing it in axially. The extreme case y;/w = 0is Kdrmén’s problem.
Note that the streamlines of members of this class are not obtained simply
by reversing the streamlines of members of class (a).

Class (¢). 0 > y;/w > —o0

The disk, and the fluid far from the disk, rotate in opposite directions,
in this case so that at some value of { (i.e. of 2z), g({) = 0 and the fluid

2.8

disc

1> Vw s o
Fic. 2

there has zero angular velocity about the axis » = 0. The angular velocity
of the disk is thus greater in absolute magnitude than that of the fluid near
it, and we anticipate that the radial velocity will be outward in the neigh-
bourhood of the disk (i.e. the disk acts locally as a centrifugal fan) but
inward elsewhere. This conclusion is supported by the following rough
investigation of the form of the functions g({) and A({). At { = 0 we have
g = 1 and, it may be assumed, g’ < 0. When { is large, g is asymptotic to
the constant values y;/w so that the function probably has the form shown
in Fig. 3. Now equation (16) can be written in the form

¢ ©
h/gz—f%dl el 11+fg-zdc, (20)
o i

T (vw)

-l

0> VNifw > — oo
Fic. 3

4
<

-

¢ T
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0

disc ~ rn

0> Vfw>=—oo
Fic. 4
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whichever range avoids the singularity at the point where g = 0. On the 4
supposition that g” > 0 for all , as in the sketch in Fig. 3, the variation |
of % required by these equations is sketched in Fig. 3 and the streamlineg | 3y

considered recently by Casal (3), who showed how the equations (15) and
(16) can be integrated by expanding the velocities as power series in
2wy which are convergent when d2w/v < 0-17.

are shown in Fig. 4. Equation (16) shows that the value of { for which |
h = 0 must be at least as great as that for which ¢ = 0. Apparently the
critical plane on which the axial velocity h vanishes, which may not
coincide with the plane of zero angular velocity, divides the flow field into
two self-contained regions. The dividing plane coincides with the disk

when y;/w = —oo and moves away to infinity as y,/w increases from —oo
to 0.

disc

<
el

disc

oo > y,/w >0
Fic. 5

Streamlines of the flow between two rotating disks

The streamlines in typical cases can again be sketched from elementary
considerations. There is one solution for each value of the parameter y,/w
between —oo and oo and for each value of the parameter d?w/v between
0 and --co. Variation of the parameter d?w/v has the effect of varying the
extent of the region of rapid change of angular velocity, i.e. of controlling
the boundary-layer character of the flow. The form of the streamlines does
not vary radically with d?w /v, so that the whole two-parameter family may
be divided into two classes in which y, /w takes opposite signs.

Class (a). +00 > yolw >

In this case the disks are rotating in the same direction and the magni-
tude of the angular velocity of the fluid varies monotonically with {. The
radial velocity will be inwards near the slower rotating disk and outwards

near the faster, which acts as a centrifugal fan, and the streamlines will

be approximately as in Fig. 5. The extreme case y,/w = 0 has been

An interesting situation arises when the Reynolds number d?» /v becomes
very large. The effect of the no-slip condition is then confined .to thin
layers near each disk and the flow outside these layers is apprommately
as for a frictionless fluid, i.e. the angular velocity in this region is approxi-
mately independent of {. The streamlines are sketched in Fig. 6. The

disc

N

disc

oo > )’2/“’ 30,d*w/y —>o0
Fic. 6

uniform angular velocity in the interior of the fluid will presumably have
a value such that the axial flow away from the slower rotating disk (con-
sidered as a disk rotating in a semi-infinite fluid which has constant angular
velocity far from the disk) is just equal to the axial flow towards the faster
rotating disk (considered in the same way). Thus if V(y,/w) is the axial
velocity far from a disk which has angular velocity w in a semi-infinite fluid
which has angular velocity y, far from the disk, the angular velocity Q in
the region between the two disks at large Reynolds number is given by
V(Qfw) = —V(Qys). (21)

The consideration of a single disk in a semi-infinite fluid showed that there
will be a solution of this equation provided that, as already supposed, Q
is intermediate between w and v,.

Class (b). 0 > yy/w > —a0

The disks now rotate in opposite directions and there is some plane
between the disks on which the value of v, is zero. Thus the radial flow
in the neighbourhood of each disk will be outward, with an inward radial
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flow in the interior of the fluid, ag sketched in Fig. 7. Asin the case of the

Enyiin ) i A f ; general shape shown in Fig. 8, which is drawn for the cage lvel < ||,
sen.uqnﬁmte fluid there Wil boa division ofthe.ﬂow e ke se?f-cfmtalped zVDVhen lve| decreases to zero the outward radia] flow near the upper disk

vanishes and the flow revertg to that obtaineq by inverting Fig. 6. The
angular velocity Q in the region outside the two boundary layers is again
determined by the equation

V(Qw) = — V(Qys),
where V has the same meaning a5 jn (21). Since O has the same sign

disc (z,)

2 disc (w)

disc (w) :
0> ?'z{u = dzu/vﬁoo
0 > ){zlw > - 00 3 FIG.8

as whichever of ¢, and y, has the 8reater magnitude (so one believes in-
e ¥ buitively), consistency of thig equation for ) with Figs. 1, 2, and 4 Tequires
that

if [vefo| < 1, then 0 Qo < 1,
and reciprocally,
if |yyw| > 1, then ¢ < Qly, < 1.
There does not, appear to be any mathematical reason why there shoulq
N0t exist a solution for which the boundary layer on the faster rotating
disk is the one in which the angular velocity changes direction. The axial

channel, anq the analogy is cloger if We imagine the two Plane walls of the

velocity must change sign somewhere between the disks, The means where- channel to pe moving in thejp planes in the direction of flow at different
by this can happen have already been explored; the flgy in the boung ary Speeds. There will be a region of reversed flow near one of the walls anq
two different solutions wil] pe Possible. again it is probable that only

layer near one disk (the slower) is Presumably ag sketcheq in Fig. 4, and : . ; ) ; -
near the other (the faster) as in Fig. 2. The streamlines thus haye the e the slower moving plane js
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The case y, = —w is singular, because there must then be a possible

distribution of velocities symmetrical about the mid-plane (just as there

is a singular symmetrical solution for flow in the diverging channel when |

the two planes have equal speeds—or in particular are stationary). Sym-
metry about the mid-plane implies that the boundary layers on each disk
are mirror images of each other and that the axial velocity immediately

disc_(-w)

ang.vel. Q

disc (+w).

Y =@ d?w /v —» o
Fic. 9

outside each boundary layer is in each case towards the disk. Somewhere
in the interior of the fluid the axial velocity must change appreciably and
must reverse its direction. This cannot happen in the absence of a strong
viscous effect, so that there is apparently a transition layer of rapid change
as sketched in Fig. 9. The axial velocity and the angular velocity both
change sign within this layer, while outside it (and outside the disk
boundary layers) they are constant.

This singular solution may not be realizable experimentally, of course,
but it has some intrinsic interest. For instance, it indicates that there is
yet another solution of the type considered herein. The central transition
layer is not directly connected with the two boundary layers (and in the
limit of infinitely large Reynolds number, its position is arbitrary, provided
it does not overlap with either of two of the boundary layers) and can be
regarded as a transition region between two semi-infinite masses of fluid
rotating with equal and opposite angular velocities FQ. Such a flow is
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described by equations (15) and (16) (with ¢ = Q®—w?; note also that the
reference angular velocity w ought now to be replaced by Q) with the new
boundary conditions

=58 — 0, O )
and h =0, g->FQlw, as (- Foo.

e = ) >

disc (w)

Disbribubion of angular velociky between the discs.
AP 2w, dzU/U oK) °°)_

Fig. 10

If this solution gives an asymptotic axial flow U(Q/w) away from the
transition layer, the condition which determines the angular velocities Q2
in the non-viscous regions of the flow in Fig. 9 is

U(Qfw) = —TV(Qw),
which will have a solution provided |Q| < |w|. The angular velocity of the

fluid between two disks evidently varies with z in the manner shown in
Fig. 10.
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