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The analysis and experiments in this paper are restricted to the flow between
two coaxial, infinite disks, one rotating and one stationary. The results of
numerical calculations show that many solutions can exist for a given Rey-
nolds number QI?/v (Q is the angular velocity of the rotating disk and 7 is the

spacing between the two disks). Out of a greater number of possible solutions, -

three solution branches have been identified; the branches correspond to one-,
two- and three-flow cells in the meridional plane.

The one-cell branch has been accorded detailed treatment. Within this
branch there are two subbranches. The first, now well documented in the litera-
ture, includes solutions from zero to infinite Reynolds number. The latter limit-
ing case is characterized by an inward-flowing boundary layer on the stationary
disk and an outward-flowing boundary layer on the rotating disk. In between
is a core flow rotating with a constant angular velocity. The second sub-branch
of the single-cell flows, apparently unknown heretofore, begins with an infinite
Reynolds number, decreases to a minimum and then increases to an infinite
Reynolds number again. The first infinite Reynolds number limit again corre-
sponds to two boundary-layer flows separated by a core flow with constant angular
velocity opposite in direction to the angular velocity of the rotating disk. The
second limiting case of infinite Reynolds number is the free-disk solution of von
Kéarmén (1921). Asymptotic solutions have been obtained which more fully
describe the nature of this flow as the Reynolds number increases.

The second part of the paper presents experimental measurements corre-
sponding to the Reynolds number range 0-100. Profiles were measured with a
hot-wire anemometer. The measurements are in agreement with the first,
one-cell branch of solutions. A semi-quantitative evaluation of edge effects is
obtained.

1. Introduction

Discussion of the steady flow of a viscous incompressible fluid between two
infinite disks is often generalized to cases where the ratio of their angular
velocities is arbitrary. However, in this paper we restrict discussion to cases
where one disk is stationary. Reynolds number is then the only apparent
independent variable.

The problem has aroused interest because of the possibility of obtaining
exact solutions to the Navier—Stokes equations for any Reynolds number;
1 Bristol-Siddeley Engines Ltd., P.O. Box 3, Filton, Bristol, England.

1 Indian Institute of Technology, Kanpur, India.
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as the Reynolds number increases one would expect to observe the evolution
of a boundary layer and a reasonable guess might be that the flow would ap-
proach the free-disk solution of von Karman (1921) such that, outside of the
rotating-disk boundary layer, the radial and tangential velocities would tend
to zero. However, Batchelor (1951), in an early extension of von Karmén’s j
formulation, argued that the main body of fluid would rotate with constant '
angular velocity and boundary layers would develop on both disks as the
! Reynolds number increased. This view was later challenged by Stewartson
(1953), who argued that the free-disk solution of von Karmén was, in fact,
i the proper limiting case for large Reynolds number. He based his reasoning on
the trend observed in solutions obtained with a series expansion for small
Reynolds number. More recent numerical solutions by Lance & Rogers (1962)
and by Pearson (1965) indicate clearly that the small Reynolds number trend
is misleading and that Batchelor’s qualitative picture of the flow was correct
in all essentials.
| The conclusion one might reach from the above evidence is that the free-disk
solution of von Kérman is not a limiting case of the two-disk solutions. How-
ever, in the present paper the alternative result is demonstrated; the von z=0 z=l
Kérman solution is seen to be the limit solution of a certain branch of two-disk | F1cURE 1. Sketch of the co-ordinate system. Except for the analysis in the
! solutions as the Reynolds number increases. Furthermore, it is apparent that ‘ Appenai,the svipinivlovsiod sy tmatationsryCi.
many other solutions for a single Reynolds number are possible.
The experimental results to be presented were obtained before the above
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picture was clear. The only data obtained correspond to the one-cell branch Definitions (@) (b)
described by Batchelor, thus lending experimental verification to Batchelor’s f 2=l z = (v/w)iy (6a,b)
prediction. v = Qre(£) v = wrg(y) (7a,b)
w= —2(Ql)H(§) w = —2(wv)h(7) (8a,b)
2. The governing equations u = QrH’(§) u = wrh/(n) (9a,b)
The governing equations for an incompressible flow consist of the continuity plp = QW P(£) + $A Q%2 plp = wvP(n) + A0 (10a,b)

equation and the three equations of motion. Assuming axial symmetry, they
e 10 ow (H"/R)+2HH"—H* = A—G* K"+ 2hh"—h2 = A—g? (11a,8)
ral™ty =0 (1) (G”/R)+2HG’ — 2H'G = 0 9"+ 2hg’ —2h'g = 0 (12a,b)
ou w2 10p Pu 2 (u\ %u P’ = —2{(H"/R)+2HH"} P = —2(h" +2h1") (13a,b)
1‘@7*'”%“7:‘,;5;”(% a‘r(;) 5‘;) ) N
Boundary conditions

u 0 ov % 9 (v\ o H(0) =0 h(0) = 0 (14a,b)
rap g =y (5;@*;)7 (7) +'a;z) ’ ) = ) = 0 (15a,b)
ow  ow 10p Pw low *w H'(0) =0 K(0) =0 (16a,b)
YotV % " ke (ﬁz‘ ror 522‘)' “) H(Q) =0 W) =0 (17a,b)
If we let [ be the disk spacing (see figure 1), z = 0 be the stationary disk g((l)) i(; gEO));(iT S
position, while z = [ is the rotating-disk position and Q its angular velocity, = - Z,(ﬂ(;) -1 (19a,b)

then the boundary conditions are 5
d TaBLe 1. The basic equations using different scaling factors. Note that equation

u(r,0) =0, wu(r,l)=0, (5a,b) set (b) is used in two ways depending on the definition of w.t
= =Q; (0) = = %, Solutions in the form
s = d ‘ t Forg(n) = 1, set w = Q; for g’(0) = 1, set w = {(v3/r) (9v/z),_o}
vr,0) =0, w(r,l)=Qr, (Beid) | of set (b) ma:,y be rescaled in the form of set (a) by noting that Q = wg(y,) and I = (v/w)}7,.
w(r,0) =0, w(r,l)=0. (5e,f)
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In table 1, for reasons to be discussed, we have formed two sets of equations
based on different dimensional schemes. Equations (6a)-(10a) or (65)—(106)
are the assumed forms of the similarity solutions which result in the ordinary
differential equations (11a)-(13a) or (115)-(13b). The problem is to obtain
solutions to the two simultaneous equations (11) and (12) after which (13) can
be easily solved for the axial pressure variation. There are six boundary con-
ditions for the fifth-order system of equations; however, the radial-pressure-
gradient parameter, A or A, is arbitrary and must also be determined.

In equation set (@) the Reynolds number, R = QI/v, appears as a parameter
in the differential equations. In equation set (b), if we set = Q (we shall later
wish to change this definition), the Reynolds number appears as 7, = R%.
This latter set of equations is useful in the free-disk limit R — oo whereas equa-
tion set (@) seems to be ideally suited to finite Reynolds numbers. For small R
a series solution for small Reynolds number has been obtained by Stewartson
(1953), Grohne (1955) and Lance & Rogers (1962). In our present nomenclature

this can be written
2

G=g—£%waaﬁﬂﬁgt4%w+mﬂm (20a)

H:%p%uxténmmx (200)

A = & +0(R?). (20¢)

3. Numerical solutions

Initially, our approach was to cast equations (11a) and (12a) in the form of
integrals for G(£) and H(£). The integrals explicitly embraced the boundary
conditions as their limits, but the integrands were functions of &, H and H’,
which were guessed. Numerical quadratures were obtained for improved solu-
tions. We found that the iterations could be made to converge up to a Reynolds
number of about 100, but beyond that nothing could be done to bring about
convergence. All of this is described in detail in a report by Chapple & Stokes
(1962).

Meanwhile, numerical solutions up to a Reynolds number of 441 appeared
in the literature (Lance & Rogers 1962). These were obtained by the method of
guessing A and two initial conditions over and above these provided at one
disk and integrating the full equations to the second disk. An iteration
proceeded until the three boundary conditions on the second disk were satisfied.
Later Pearson (1965) applied the interesting method of solving the unsteady
Navier-Stokes equations and obtaining the asymptotic steady solutions at
large times. In particular he obtained a solution for a Reynolds number of
1000 which was an apparent continuation of the solutions of Lance & Rogers
(1962) and left little doubt as to the asymptotic behaviour of the solutions for
large Reynolds number. Batchelor’s speculations were thus verified analytically.

In the interval 1962 to 1966 a revival of effort by the first author of this paper
provided indication that the picture was not at all complete. After several
trials the following procedure was adopted.
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Equation set (b) forms the basis of our approach. The integration of (11b)
and (12b) is started at the stationary disk, where we set A(0) = &'(0) = g(0) = 0.
Furthermore, we define the free parameter, o = {(v}/r) (9v/dz),_,}} so that
¢'(0) = 1. To start the integration we now need to specify only two parameters,
A"(0) and A"(0) = A.

For given values of 2”(0) and A" (0) the integration proceeds (we used a third-
order Runge-Kutta technique) from % = 0 to some value where g(y) exceeds
some large number (we chose 108). In this interval, values of % where 2'(7) = 0
were recorded along with the corresponding values of k(y). For a given A"(0),

R=-365
8 1410 —310\///C0/
7 @
Vi 129 122
7/
-210 7
- >
7/
/
S
g | ] ] 1 ] 1 1
1218 1220

-

—1(0)

F1cUure 2. A map of the values ~”(0) and A"(0) which together with A(0) = A’(0) = g(0) = 0
and g’(0) are the initial conditions to give any solution. The inset is a detail around the one-
cell singular point seen in the main plot.

one could vary A”(0) until k(7;) = 0 at the same 7, where %/(7;) = 0. This would
then constitute a solution to our problem, which, if desired, could then be
rescaled to G(&) and H(§). (It is evident that g(y) = Q/w and therefore
R = QBfv = yig(m).)

With the above system at our disposal it is, in principle, possible to identify
all possible solutions on a plot of A”(0) vs. "(0). In figure 2 we have only traced
out a three-cell branch of solutions, a two-cell branch and two one-cell branches.
A “cell’ is defined as the flow bounded by planes of constant z where & =0
and therefore includes only its own recirculating fluid.

In figure 2 the first one-cell branch is shown as a solid line while the second
one-cell branch is broken. At the juncture of these branches a very detailed
treatment is required about a singular point where R approaches an infinite
value. Where such points occurred in the two- and three-cell branches we have
7-2
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discontinued the investigation. In the case of the one-cell solutions, a detail is
shown for the neighbourhood of the singular point. In all but the first one-cell
branch g(y) changes sign and such solutions have been designated by negative
values of B. However, this is merely a convention of the present paper since, if,
for R = Ry, g, and h, are a solution, then, for R = —R,, g, = —¢, and hy = b,
are another solution. Table 2 lists the numerical values of 2”(0) along with useful
values at the rotating disk, e.g. g’(7,) or G’(1), which can be used to compute the
torque exerted by the fluid on the rotating disk.

6 p—
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34
>
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5 |s 2
1 i I
% 2 4 ; O
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— 1 e =
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25k

FIGURE 3. A sample multi-cell solution.

As noted previously we have carried out a detailed study of the two branches
for only the one-cell cases. However, before discussing these solutions, sample
three-cell solutions are illustrated in figure 3.

We believe, but cannot prove, that the one-cell solutions have been deter-
mined completely. The start of the sequence at A”(0) = A”(0) when R =0
is given by equations (20a, b, ¢) in the form of G(£) and H(£). Then, using the
numerical routine 4”(0) and 2”(0) are varied as previously described so as to
satisfy the outer boundary conditions. In table 2 it will be seen that, to reach
the value R = 337 or R = — 958, one must finally resort to variations of A”(0)
and A”(0) in the eighth decimal place, which is the limit of significance of the
present calculation.t As seen in the solutions of figures 4 and 5, a solid-body
rotational core develops between the stationary and rotating disks where
g(n) ~ g, = const. and h(y) ~ h, = const.

To investigate the solution as R -+ 00, we must analyse the core flow in
some detail. There, it should be possible to set

g(m) = go+9:(n),  h(n) = hy+hy(n), (21a.b)

T Weused evenly spaced intervals of Ay = 0-01. Halving the interval yielded no significant
change in the results except to alter the required value A”(0) for a given 2”(0) in the seventh
decimal place.
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where g,%, and all their derivatives are assumed to be small. Substituting
(21a, b) into (11b) and (12b), setting JA = g§ and neglecting products of g,, &,
and their derivatives yields
Ry +2hohi+ 2909, = 0, g1+ 2hyg" —2g0h7 = 0. (22,ab)
Solutions to (22a,b) can be obtained in the form
g = go+ A1 exp (R} cos { A7 — 1} + Ay xp (R — M)} cO8 {Fo(1 =) — o},
(23a)
B = Ayexp{R,n}sin{ 11— ¢} + Ay exp {Za(n — 1) {sin { Fo(n — 7o) — 3},
(23b)
%
where & ho{ =1+ (1 +g¢®)2 cos 6}, j‘} = ho{ T (1 + g2} sin 6}
Ry Fa
and q = 2g,/h2, 6 = }(tan~1q). A, ¢, 4,, ¢, are arbitrary constants. Since we
shall find %, to be negative and %, positive, the additional constant 7, has been
introduced as a convenience by which the core size may be increased as the
Reynolds number is increased.

The Biodewadt solution

The Bodewadt (1940) solution whereby the flow is asymptotic to zero radial
velocity and solid-body rotational velocity as 7 —co may be obtained by
setting g, = 1-183, hy = —0-743, 4, = 1-2926, ¢; = 5-991 and A4, = 0. These
values are, of course, obtained by matching equations (23, b) to the numerical
solution corresponding to A"(0) = —1-2187724, A" (0) = 1-4098730. In fact, the
two solutions match surprisingly well over the entire interval 3 < 7 < 7.

The two one-cell solutions for R -~ + oo

Again, with g, = 1-183 and h, = —0-743 and with very large 7, the procedure
is to use equations (23a,b) to determine initial values at » = 9y, for &, »’, h”, g
and g’, which are used to restart the numerical calculation. For any small value
of 4, (since 7, is arbitrary) a solution can then be determined for a given ¢,.

Two solutions were found in this manner which satisfy the outer boundary
conditions. For 4, = 0-:001 we found ¢, = 2-1677 and ¢, = 0-2566 at 5 = 7,.

In figures 4 and 5 the two solutions are shown and labelled R = +co. It
should be noted that the numerical solutions and equations (23, b) match well
solong as y—7y; < — 15,

An examination of figures 4 and 5 indicates that our solutions for R = + o0
are indeed the limit solutions of the two one-cell branches and that, with the
help of equations (23a,b), flows for Reynolds numbers in the range

33T<R<ow and —o0< R< —958
may be obtained by varying 7,.

Approach to the von Kdrmdn flow
In figure 5 (or see figure 2) the absolute Reynolds number goes through a
minimum and then increases. At R = —437 the solutions are in need of re-
scaling, and this is achieved by setting w = Q (instead of that necessary to

e S A S5t g 2
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give ¢’(0) = 1). Figure 6 continues plots of the solution in the rescaled (von
Karmén 1921) co-ordinates. As will now be seen the flow approaches the free-
disk solution as R—— 0, and a rather interesting and simplesituation develops.
The limiting behaviour can be obtained according to the ‘method of matched

(T =

g = v/wr
'S
T
R=67
116
I

194
337
)

=]
T
(=3

10
08
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04
¥ o2

=02
—0-4

-06 - 7 = z/(w/v) 17—,

0 2 4 6
0

{94
337
=3

—04

R=67
Ug

h _0.6 —
~08 -
—-10 - -10
Ficure 4. The solutions for R = 0 to R= 0. The later limit solution corresponds to a

solid rotational core bounded by layers with circumferential velocities of the same sense.
The Bédewadt solution is also contained in this plot.

asymptotic expansions’ reported by Van Dyke (1964). Thisrather formal analysis
has been confined to the appendix so that we can here describe the principal
results in simple terms. The outer flow is defined as the flow between the
stationary disk and the thin boundary layer on the rotating disk. For small
enough (Q72/v)~% we find that the circumferential velocity is essentially zero as
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F1cure 5. The solutions for B = — oo to finite values. Circumferential velocities on the

boundaries are in the opposite sense. The Bodewadt solution is also contained in this plot.




106 G. L. Mellor, P. J. Chapple and V. K. Stokes

compared to the large circumferential velocity in the boundary layer which is
given by the von Karman solution. The main function of the outer flow is to
supply axial flow to the inner boundary-layer flow, which is then centrifuged
outward. The first-order solution of the outer flow is, in fact, given by

v =0, (24a)
u = —0-886(Qu)¥ (r/l) £, (245)
w = 0-886(Qv)} £2. (24c¢)
10
- 05
—c0 I 1 ]
=30 -20 -10 00
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F1eure 6. A continuation of the solutions of figure 5 from R equal to finite values to R= — oo

again. The variables have been rescaled, however, so that the von Kérman limiting solution

remains finite. Note that the solutions for v do not exactly overlap but the differences
are very small.

At £ =1-0, w = 0-886(Qu)} is just the axial velocity required by the free-disk
ﬂqw. Equations (24a—c) represent a vorticity-preserving flow or more precisely
0(z,7) = (0u|dz— dw|ér)ec r, which accounts for the shrinking of vortex tubes
while fluid moves radially inward. It can now be verified that equations

(24a-c) are, in fact, exact solutions to equations (1)—(4). Actually, they were

—w/2,/(Qw)
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first obtained by Stewartson (1953); the appendix merely provides a syste-
matic means of finding higher-order corrections.

We have, by the way, recomputed the free-disk flow using starting values
provided by equations (23a,b), where now g, = 0. We find that our solution
agrees in the third decimal place with the results reported by Cochran (1934).

4. Experimental results

A small apparatus was constructed consisting of a rotating and stationary
disk, 4-29in. radius and separated by an axial clearance of §in. The rotating
disk was run at speeds to give R = QI*/v = 50 and 100; at standard atmo-
spheric conditions this corresponds to Q = 730 and 1460 rev/min.
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(a) (b)
Ficure 7. Hot-wire velocity measurements compared with calculations at R = 50. The disk
spacing was }in., radius 4-29in., and the rotational speed was 730rev/min. O, measure-
ments at 1-77 in. radius; [], 3in. radius.

A constant-current, hot-wire anemometer which was frequently recalibrated
was used to measure the tangential velocity, and the radial velocity. Further,
details of the apparatus and an estimate of errors are contained in the report
by Chapple & Stokes (1962).

When the apparatus was initially run, the flow became turbulent at a Rey-
nolds number QI2/r ~ 70. Correspondingly the Reynolds number based on
outer radius, Qr2/v, was 45,000, which is one-tenth the transition value of a
free disk as found by Gregory, Stewart & Walker (1955). Hot-wire probing
indicated the source of the turbulence to be in the outward-flowing air at the
outer juncture of the rotating disk and a stationary hardboard sheet which was
flush with the disk. This turbulent air was then re-ingested on the stationary-
disk side of the apparatus. The clearance between the disk and the hardboard
sheet was then increased slightly, and suction was applied without result.

R
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Finally the hardboard sheet was removed, leaving free edges, and the edges of
both disks were machined to a % in. radius. The flow was then free of turbulence
for R = 100 and less.

Circumferential and meridional velocity measurements are shown in figures
7a,b and 8a, b for R = 50 and 100 respectively. Measurements were made at
radii of 177 and 3-0 in. The data shown are the average of two sets taken at
different times. The differences in the two sets were in all cases negligibly small.
The theoretical predictions shown in the figures correspond to the first, one-
cell branch of solutions.
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Ficure 8. Hot-wire velocity measurements compared with calculations at R = 100.
The rotational speed was 1460 rev/min. O, 1-77 in. radius; [], 3in. radius.

In the case of the inner-radius measurements of the circumferential velocity,
agreement between theory and data is quite good, although there are some
obvious errors near the disk surfaces. It is probable that the outer radius measure-
ments are just as reliable and that, there, the difference between theory and data
is due to the fact that the disks have a finite radius.

Comparison of the radial velocities is less satisfactory and is partly explained
by the fact that the radial velocities are quite a bit smaller than the circum-
ferential velocities. Actually, the hot wire measures the total meridional

velocity component

u?+w?\? P

2 == N He el HY

(o) = (o)’
but at the inner and outer radius we have 2I/r = 1-41 and 0-083, and H is
less than 0-05 for both Reynolds numbers; the axial velocity is therefore
negligible. The non-zero radial velocity measured where it obviously changes
sign is a real error in measurement and reflects the difference between the uni-
form flow in which the wire was calibrated and the highly sheared flow in the
apparatus. With this in mind one suspects that the radial velocities at the

—
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inner radius are actually closer to the theoretical values than is indicated by the
graphs.

In addition to the velocity measurements, the radial pressure gradient was
measured. A micromanometer was used to measure pressure differentials
between two different intervals of radii. In figure 9, the experimental points
at B =100 and only the solid points at R = 50 correspond to a spacing of
1in. and a speed of 730 and 1460 rev/min; for all the open points the rotating

03

02

01 Sl

Ficure 9. Radial-pressure-gradient measurements compared with calculated values. All
of the open points correspond to 1460 rev/min while the Reynolds number was varied by
varying the spacing. The solid points at R = 50 correspond to the conditions of figure 7.
Values of A are obtained from table 2 (A = A"(0)/g%7;)). As R - o0, A - 0-102. [], measured
between radii 1-77 and 2-375in.; O, measured between radii 2-375 and 3 in.

disk was maintained at the maximum rotational speed of 1460rev/min, while
the spacing was adjusted to vary the Reynolds number. This was done to
maintain a measurable pressure difference level for very small Reynolds
numbers. The sum of the pressure differences at the two intervals of radii
agreed well with the independent measurement of the total difference across the
total radial interval.

In general it is clear that the measurements are in fair agreement with the
first, one-cell branch of solution. Agreement is improved for the smallest radii
as expected and for the smaller Reynolds numbers. It is also clear from the
measurements that the fluid near the stationary disk has been re-ingested in
the apparatus and originally was the fluid near the rotating disk. The fluid
therefore has a higher tangential velocity at the larger radius. It therefore
seems clear that differences between theory and data are directly related to
edge effects.
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5. Conclusions

It is now apparent that many solutions exist for a given Reynolds number,
QI?/v. We have singled out the one-cell branch solutions for detailed study and
have found two sub-branches. The first starts at zero Reynolds number and
limits to an infinite-Reynolds-number flow characterized by solid-body rota-
tion of the core and bounded by two boundary layers on the stationary and
rotating disks: the second starts with an infinite absolute Reynolds number,
decreases to a minimum and then increases to infinite Reynolds number again.
The latter limiting case is the free-disk solution of von Kérman characterized
by a single boundary layer on the rotating disk. The limiting-flow solution
between the boundary layer and the stationary disk is a rather simple solution
to the Navier—Stokes equations.

The experimental data obtained for QI%/v = 50 and 100 clearly conform to
the first one-cell branch of solutions. Agreement with theory improves as the
radius decreases.

When the experiments were run, the second one-cell branch of solutions were
unknown. It is therefore left to speculation as to the extent to which this type
of flow can be realized in the laboratory. Our calculations indicate that the
Reynolds number must be greater than about 220. Moreover, it is probable that
edge effects are important; that is, if angular momentum produced in the
boundary of the rotating disk is re-ingested at the outer radius, it is possible that
the first sub-branch would still be obtained. On the other hand, if it could be
arranged that the ingested air have negative (compared to the rotating disk)
angular moment, then it is possible that the second one-cell flow might be
obtained. But, for very large Reynolds number, it is also possible that the
second one-cell flow could be obtained approximately so long as the ingested
air has a small enough positive angular momentum; this is inferred from the
fact that the first-order asymptotic solution for large Reynolds numbers yields
zero angular velocity outside of the rotating-disk boundary layer. Also, experi-
mental data do exist for the free-disk limit (Gregory ef al. 1955).

Appendix

In this appendix we will examine the asymptotic solution which in the limit
becomes the free-disk solution of von Kdrman (1921). It is convenient to reverse
the co-ordinate system so that now z = 0 corresponds to the rotating disk and
z = l is the stationary disk. If we set € = (QI?/v)~%, the inner solution, near the
rotating disk, can be assumed to be

v = Qr{go(n) +eg1(n) + ...}, (25a)

w = —2(Qu)t {ho(n) + €y () + ..}, (26a)

u = Qrho(n) +ehi(n) + ...}, (27a)
plp = Qv{Py(n) +ePy(p) + ...}

+3Q%2 {ed; + €A, + ...}, (28a)

7 = 2(Qv)t. (290)
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The outer solution will be assumed to be:

v = Qr{eG,(£) +€*Gy(8) + ...}, (25b)

w = —2Ql{eH,(§) + 2 Hy(§) + ...}, (26b)

u = Qr{eH (&) +e2Hy(&)+...}, (270)
plp = QUHePy(§) +e2Py(E) + ...}

+5Q%2%{eA, + €Ay +...}, (28b)

£ =2l (29b)

The procedure is now as follows:

(i) Imsert equations (25a)—(28a) into equations (2) and (3) and collect
terms of order €°, €, .... (We will here not consider the solution for the z depend-
ence of p.).

(ii) Insert (25b)—(28b)into (2) and (3) and collect terms of order €°,¢l,....
Actually there are no terms of order €. The terms of € yield A; = 0.

(iii) satisfy the boundary conditions at 7 = 0 and 5 = 1.

(iv) match the velocity components and the pressure near the disk, but out-
side the disk boundary layer. To demonstrate the matching procedure, we
consider v(5) = v(§) where & = ey. Therefore

eG4 (E)} +eXGy(E)} + ... = €{G4(0) +enG1(0) +...}
+€¥G4(0) +enGy(0) + ...}
+...

= go(m) +€92() + ...
Collecting terms and letting € — 0 we have

go (n —00) ~ 0, gy (7 —>00) ~ G4(0), ete.

Matching the pressures yields A, = 0.
We shall now list the equations together with their corresponding boundary
conditions in the order in which they must be solved:

Bl + 2hoh” — B2 = — g3,
9o+ 2hogo— 2hgg, = O,

90(0) =1, go(n —c0) ~ 0, (30)
By(0) = 0, hf(n—>o0) ~ 0,
ho(0) = 0.

(It should be noted that in the original set of equations A (or A) was undeter-
mined and, therefore, a third, outer-boundary condition, &, (7 — c0), was
required. However, A, = 0 and the above equations lead to the von Karman
solution, where now a result is Ay(c0) = 0-443.)

2H H,—H{2 = A, — G5,
H,G,—H,&, =0,
Hi(1) =0, (31)
H,(0) = hy(0) = 0-443, H,(1) = 0,

G,(1) = 0
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(In this equation set we have lost the highest-order derivative; i.e. the equa-
tions are inviscid. The differential equations are third order but A, is arbitrary.)

B+ 2ho By — 2B+ 2y = — 20,
91+ 2hog1 +2hogy = 2951 — 2k, g,

9:1(0) = 0, g, (7 - 0) ~ G4(0), (32)
hi(0) = 0, &3 (g - c©) ~ H;(0),
24(0) = 0.

Equations (30) yield the von Kdrmén solution, which calls for an axial velo-
city flow to the disk boundary layer. This axial flow is essentially supplied by
the solution to equations (31).

The solution to equations (31) is remarkably simple. If we set A, = 0 it is
possible to satisfy the differential equations and all of the boundary conditions

with @, =o,
H, = 0-443(1 _g)Z.} (33)
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Large-amplitude Bénard convection in a rotating fluid
By GEORGE VERONIS
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Linear stability theory of Bénard convection in a rotating fluid (Chandrasekhar
1961) has shown that fluids with large (> 1) Prandtl number, o, exhibit behaviour
markedly different from that of fluids with o < 1. This difference in behaviour
extends also into the finite-amplitude range (Veronis 1959, 1966 I). In this paper
we report a numerical study of two-dimensional Bénard convection in a rotating
fluid confined between free boundaries, with o = 6-8 and o = 0-2 for the range of
Taylor number 0 < 72 < 10° and for Rayleigh numbers, R, extending an order
of magnitude from the critical value of linear stability theory. The behaviour
of water (o = 6-8) is dominated by the rotational constraint even for relatively
moderate values (~ 103) of 72. A study of the resultant velocity and temperature
fields shows how rotation controls the system, with the principal behaviour
reflected by the thermal wind balance; i.e. the horizontal temperature gradient
is largely balanced by the vertical shear of the velocity component normal to the
temperature gradient. A fluid with a small Prandtl number (o = 0-2) becomes
unstable to finite-amplitude disturbances at values of the Rayleigh number
significantly below the critical value of linear stability theory. The subsequent
steady vorticity and temperature fields exhibit a structure which is quite different
from that of fluids with large o~. The rotational constraintis balanced primarily
by non-linear processes in a limited range of Taylor number (772 < 10%¢). For
larger values of .72 the system first becomes unstable to infinitesimal oscillatory
disturbances but a steady, finite-amplitude flow is established at supercritical
values of R which are none the less smaller than the values that one would expect
from linear theory. The ranges of Taylor number in which the above phenomena
occur are different from those which were estimated on the basis of an earlier
study (Veronis 1966 I) which made use of a minimal representation of the
finite-amplitude velocity and temperature fields. No subcritical, finite-amplitude
oscillatory motions were found in the present study. Comparison with some of the
experimental features observed and reported by Rossby (1966) is also discussed
and it is pointed out that some of the differences between theory and experiment
may be traced to the restrictive conditions (two-dimensionality and free bound-
aries) of the present study.

1. Introduction and summary

The study of the processes involved in two-dimensional Bénard convection is
extended in this paper to include the effects of a uniform rotation of the fluid
layer about a vertical axis. By means of an electronic computer it is possible to
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