X-ray tomographic studies of Stardust samples: a track and individual particles

A. Tsuchiyama¹, K. Uesugi², T. Nakano³, T. Okazaki¹, T. Nakamura⁴, A. Takeuchi², Y. Suzuki², and M. Zolensky

¹ Department of Earth and Space Science, Osaka Univ. ² SPring-8/JASRI, ³ GSJ/AIST

⁴ Department of Earth and Planetary Sciences, Kyushu Univ., ⁵ JSC/NASA

Two types of tomographic studies at BL47XU/SPring-8

 3-D structures of impact tracks SUBTEAM: Bulk-composition Projection tomography (high resolution) Resolution: 0.5 or 0.195 μm/pixel Samples: 4 tracks* in keystones with XRF (T. Nakamura)

2. 3-D structures of individual particles SUBTEAM: Mineralogy-Petrology Imaging tomography (ultra-high resolution) Resolution: 0.0425 μm/pixel Samples: 4 particles removed from 2 tracks* with XRD at BL17/PF (T. Nakamura)

* Different tacks

3D structures of impact tracks

Projection tomography (0.5 or 0.195 μ m/pixel) Samples: 4 tracks (C2126,2,68,0; 32,0; 67,0; 47,0) Photon energy: 10 keV No. of projection: 1500 3-D image: 2000x2000 matrix, 1312 slices

XRF Photon energy 15 keV Beam size: 40x40 to 400x260 μm

Procedure

P1

107

99

P2

P3

200µm

Optical microscopy

- (1) Optical microscopy
- (2) Radiography

Whole 2-D image of keystone

(3) XRF

Coarse mode: cover whole track Fine mode: individual particles

(4) Tomography

Coarse mode: cover whole track Fine mode: details of a track

CT slice images (C2126,2,68,0)

Dark space: track hole with radial cracks Bright wall: condensed aerogel (melted?) with very fine particles? White: captured particles

Track is bifurcated into main and sub-tracks.

Particles are present along tracks and radial cracks as well as the main track terminal.

CT images parallel to the track (C2126,2,68,0) radial crack bifurcation subtrack-1 main track main track main track main track slice 229 slice 239 slice 219 0.5 1 mm 20 0 10 0 CT value (cm⁻¹)

terminal particle

Many particles are present along the main and subtrack-1.

Track: Bird's eye view (C2126,2,68,0)

Gray: track hole and radial cracks **Blue:** condensed aerogel **Red:** captured particles

Track is bifurcated into 5 or 6. Main and subtracks have terminal particles, respectively. Many particles are present along the bifurcated tracks.

Track size vs. XRF data (C2126,2,68,0)

	volume	mode(%)		diameter (μ m)
	(μm³)		entrance	79.9x60.5
track	7.788E+06	78.75		length (µm)
particles	3.155E+04	0.32	main track	2484
condensed		0102	subtrack-1	1672
aerogel	2.070E+06	20.93	subtrack-2	1353
total	9.889E+06	100.00	subtrack-3	1107
			subtrack-4	1027
main track			subtrack-5(?) 756

Whole Fe mass: 6.66x10⁻¹¹ g XRF data Estimated mass (whole grain): 7.6x10⁻¹⁰ g

Fe mass/track volume: 8.56x10⁻⁶ g/cm³ Estimated whole mass/track volume: 9.7x10⁻⁵ g/cm³ if density=1 g/cm³ : 0.01 vol.%

If track volume is proportional to mass, we may evaluate volatile/solid ratio among different tracks. track volume ↔ kinetic *E* = 1/2*mv*² (*v*~const.)

Track bulb: Bird's eye view (C2126,2,68,0)

U-shaped radial crack (main: arrow-a and sub: arrow-b)

Crack along the central axis of the U-shaped crack: arrow-c

Subtrack-4 grows from the central crack: arrow-d (each subtrack seem to grow from a crack)

Wavy radial crack: arrow-e

Some particles are in radial cracks: arrow-f

3D structures of individual particles

Imaging tomography (0.0425 μm/pixel) Samples: 4 particles (C2004.1.44.3, C2054.0.35.6; .5,; .4) Photon energy: 8 keV No. of projection: 3600 3-D image: 2000x2000 matrix, 1312 slices

XRD BL17/Photon Factory, Japan

The results are presented by T.Nakamura

Conclusions

- Whole dust particle
 - less fragile particles + fragile aggregate of fine particles
 - ← 3-D structure of track
 - ← 3-D structures of individual particles less fragile particles: crystalline fragile aggregate: amorphous-rich (mixture with aerogel)
- Not easy to reconstruct whole dust particle texture completely by tomography alone
- Fe mass/track volume
 - → whole dust particle/track volueme: ~ 0.01 vol.%
 - → may estimate volatile/solid ratios of whole dusts particles among tracks
- Crystalline particles evidence of melting? (SEM/EBSD or TEM study required) fractured surface