Radon transform for cone beam CT
rotation of the sample

$$
\binom{r}{s}=\left(\begin{array}{rl}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}
$$

length of the perpendicular lines

$$
\begin{aligned}
& a=\left(r-u \cdot \frac{A+s}{B}\right) \cdot \cos \phi=\left(r-u \cdot \frac{A+s}{B}\right) \cdot \frac{B}{\sqrt{B^{2}+u^{2}}}=\frac{B \cdot r-u \cdot(A+s)}{\sqrt{B^{2}+u^{2}}} \\
& b=\left(z-w \cdot \frac{A+s}{B}\right) \cdot \cos \psi=\left(z-w \cdot \frac{A+s}{B}\right) \cdot \frac{B}{\sqrt{B^{2}+w^{2}}}=\frac{B \cdot z-w \cdot(A+s)}{\sqrt{B^{2}+w^{2}}}
\end{aligned}
$$

projection for a single beam

$$
p(u, w) \approx \Delta_{x y} \cdot \sum_{x, y, z} f(x, y, z) \cdot \operatorname{sinc}\left(\pi \cdot \frac{a}{\Delta_{x y}}\right) \cdot \operatorname{sinc}\left(\pi \cdot \frac{b}{\Delta_{z}}\right)
$$

where
$\Delta_{x y}$: grid interval of $f(x, y, z)$ along x and y directions
Δ_{z} : grid interval of $f(x, y, z)$ along z direction

