image reconstruction for fan beam CT

 version 2 (2015/03/06, 2015/03/18, 2017/04/08)parallel beam CT

fan beam CT

synthetic projection mehod
$p(r, \theta)=p_{B}(u, \lambda)$
where
$p_{B}(u, \lambda) \quad$: observed projection of fan beam CT
$p(r, \theta) \quad$: synthetic projection for the equivalent parallel beam CT
with

$$
\left.\begin{array}{l}
r=u \cdot \cos \gamma-(B-A) \cdot \sin \gamma=\frac{A \cdot u}{\sqrt{B^{2}+u^{2}}} \\
\theta=\lambda-\gamma=\lambda-\tan ^{-1}\left(\frac{u}{B}\right)
\end{array}\right\} \text { or }\left\{\begin{array}{l}
u=\frac{B \cdot r}{\sqrt{A^{2}-r^{2}}} \\
\lambda=\theta+\tan ^{-1}\left(\frac{r}{\sqrt{A^{2}-r^{2}}}\right)
\end{array}\right.
$$

detector interval

$$
\delta_{r}=\frac{A}{B} \cdot \delta_{u}
$$

convolution back-projection (CBP) method for fan beam CT

CBP method for parallel beam CT
reconstruction filter: $g(r)=\int_{-\infty}^{+\infty}|k| \cdot \exp (2 \cdot \pi \cdot i \cdot r \cdot k) d k$
convolution: $\quad q(r, \theta)=\int_{-\infty}^{+\infty} g(r-\rho) \cdot p(\rho, \theta) d \rho$
back-projection : $\quad f(x, y)=\frac{1}{2} \cdot \int_{0}^{2 \pi} q(x \cdot \cos \theta+y \cdot \sin \theta, \theta) d \theta$
$\rightarrow f(x, y)=\frac{1}{2} \cdot \int_{0}^{2 \pi} \int_{-\infty}^{+\infty} g(x \cdot \cos \theta+y \cdot \sin \theta-r) \cdot p(r, \theta) d r d \theta$
change of variables of the double integral

$$
\iint h(r(u, \lambda), \theta(u, \lambda)) d r d \theta=\iint h(r(u, \lambda), \theta(u, \lambda)) \cdot\|J\| d u d \lambda
$$

where $\|J\| \equiv\left|\frac{\partial r}{\partial u} \cdot \frac{\partial \theta}{\partial \lambda}-\frac{\partial r}{\partial \lambda} \cdot \frac{\partial \theta}{\partial u}\right|=\frac{A \cdot B^{2}}{\left(B^{2}+u^{2}\right)^{3 / 2}}$
: absolute value of
determinant for Jacobian matrix argument of the reconstruction filter

$$
\begin{aligned}
x \cdot \cos \theta+y \cdot \sin \theta-r & =x \cdot \cos (\lambda-\gamma)+y \cdot \sin (\lambda-\gamma)-(u \cdot \cos \gamma-(B-A) \cdot \sin \gamma) \\
& =\frac{B \cdot(x \cdot \cos \lambda+y \cdot \sin \lambda)-u \cdot(A-x \cdot \sin \lambda+y \cdot \cos \lambda)}{\sqrt{B^{2}+u^{2}}} \\
& =\frac{A-x \cdot \sin \lambda+y \cdot \cos \lambda}{\sqrt{B^{2}+u^{2}}} \cdot\left(\frac{B \cdot(x \cdot \cos \lambda+y \cdot \sin \lambda)}{A-x \cdot \sin \lambda+y \cdot \cos \lambda}-u\right)
\end{aligned}
$$

notable property of the reconstruction filter

$$
\begin{aligned}
g(\alpha \cdot \beta) & =\int_{-\infty}^{+\infty}|k| \cdot \exp (2 \cdot \pi \cdot i \cdot \alpha \cdot \beta \cdot k) d k \\
& =\int_{-\infty}^{+\infty}\left|\frac{\kappa}{\alpha}\right| \cdot \exp (2 \cdot \pi \cdot i \cdot \beta \cdot \kappa) \cdot \frac{1}{\alpha} d \kappa=\frac{1}{\alpha^{2}} \cdot g(\beta)
\end{aligned}
$$

CBP method for fan beam CT

$$
\begin{aligned}
& \binom{R(x, y, \lambda)}{S(x, y, \lambda)}=\binom{x \cdot \cos \lambda+y \cdot \sin \lambda}{-x \cdot \sin \lambda+y \cdot \cos \lambda}=\left(\begin{array}{cc}
\cos \lambda, & \sin \lambda \\
-\sin \lambda, & \cos \lambda
\end{array}\right)\binom{x}{y} \\
& f(x, y)=\frac{1}{2} \cdot \int_{0}^{2 \pi} \int_{-\infty}^{+\infty} g\left(\frac{A+S}{\sqrt{B^{2}+u^{2}}} \cdot\left(\frac{B \cdot R}{A+S}-u\right)\right) \cdot p_{B}(u, \lambda) \cdot\|J\| d u d \lambda \\
& \quad=\frac{1}{2} \cdot \int_{0}^{2 \pi} \int_{-\infty}^{+\infty}\left(\frac{\sqrt{B^{2}+u^{2}}}{A+S}\right)^{2} \cdot g\left(\frac{B \cdot R}{A+S}-u\right) \cdot p_{B}(u, \lambda) \cdot \frac{A \cdot B^{2}}{\left(B^{2}+u^{2}\right)^{3 / 2}} d u d \lambda
\end{aligned}
$$

reconstruction filter : $\quad g(u)=\int_{-\infty}^{+\infty}|k| \cdot \exp (2 \cdot \pi \cdot i \cdot u \cdot k) d k$
\rightarrow convolution : $\quad q_{B}(u, \lambda)=\int_{-\infty}^{+\infty} g(u-v) \cdot \frac{A}{\sqrt{B^{2}+v^{2}}} \cdot p_{B}(v, \lambda) d v$
back-projection: $\quad f(x, y)=\frac{1}{2} \cdot \int_{0}^{2 \pi}\left(\frac{B}{A+S}\right)^{2} \cdot q_{B}\left(\frac{B}{A+S} \cdot R, \lambda\right) d \lambda$
when rotation axis is not on the line connecting light source and illumination center

$p(r, \theta)=p_{B}(u, \lambda)$
$r=(u-C) \cdot \cos \gamma-(B-A) \cdot \sin \gamma=\frac{A \cdot u-B \cdot C}{\sqrt{B^{2}+u^{2}}}$
$\theta=\lambda-\gamma=\lambda-\tan ^{-1}\left(\frac{u}{B}\right)$
$\frac{\partial r}{\partial u}=\frac{B \cdot(A \cdot B+C \cdot u)}{\left(B^{2}+u^{2}\right)^{3 / 2}}$
$\frac{\partial r}{\partial \lambda}=0$
$\frac{\partial \theta}{\partial u}=-\frac{B}{B^{2}+u^{2}}$
$\frac{\partial \theta}{\partial \lambda}=1$
$x \cdot \cos \theta+y \cdot \sin \theta-r=x \cdot \cos (\lambda-\gamma)+y \cdot \sin (\lambda-\gamma)-((u-C) \cdot \cos \gamma-(B-A) \cdot \sin \gamma)$

$$
\begin{aligned}
& =\frac{B \cdot(C+x \cdot \cos \lambda+y \cdot \sin \lambda)-u \cdot(A-x \cdot \sin \lambda+y \cdot \cos \lambda)}{\sqrt{B^{2}+u^{2}}} \\
& =\frac{A-x \cdot \sin \lambda+y \cdot \cos \lambda}{\sqrt{B^{2}+u^{2}}} \cdot\left(\frac{B \cdot(C+x \cdot \cos \lambda+y \cdot \sin \lambda)}{A-x \cdot \sin \lambda+y \cdot \cos \lambda}-u\right)
\end{aligned}
$$

$g(\alpha \cdot \beta)=\int_{-\infty}^{+\infty}|k| \cdot \exp (2 \cdot \pi \cdot i \cdot \alpha \cdot \beta \cdot k) d k=\cdots=\frac{1}{\alpha^{2}} \cdot g(\beta)$
$\binom{R(x, y, \lambda)}{S(x, y, \lambda)} \equiv\binom{x \cdot \cos \lambda+y \cdot \sin \lambda}{-x \cdot \sin \lambda+y \cdot \cos \lambda}=\left(\begin{array}{rr}\cos \lambda, & \sin \lambda \\ -\sin \lambda, & \cos \lambda\end{array}\right)\binom{x}{y}$
$f(x, y)=\frac{1}{2} \cdot \int_{0}^{2 \pi} \int_{-\infty}^{+\infty} g(x \cdot \cos \theta+y \cdot \sin \theta-r) \cdot p(r, \theta) d r d \theta$

$$
=\frac{1}{2} \cdot \int_{0}^{2 \pi} \int_{-\infty}^{+\infty} g\left(\frac{A+S}{\sqrt{B^{2}+u^{2}}} \cdot\left(\frac{B \cdot(C+R)}{A+S}-u\right)\right) \cdot p_{B}(u, \lambda) \cdot\|J\| d u d \lambda
$$

$$
=\frac{1}{2} \cdot \int_{0}^{2 \pi} \int_{-\infty}^{+\infty}\left(\frac{\sqrt{B^{2}+u^{2}}}{A+S}\right)^{2} \cdot g\left(\frac{B \cdot(C+R)}{A+S}-u\right) \cdot p_{B}(u, \lambda) \cdot \frac{B \cdot(A \cdot B+C \cdot u)}{\left(B^{2}+u^{2}\right)^{3 / 2}} d u d \lambda
$$

$$
=\frac{1}{2} \cdot \int_{0}^{2 \pi} \int_{-\infty}^{+\infty}\left(\frac{B}{A+S}\right)^{2} \cdot g\left(\frac{B \cdot(C+R)}{A+S}-u\right) \cdot p_{B}(u, \lambda) \cdot \frac{A+\frac{C}{B} \cdot u}{\sqrt{B^{2}+u^{2}}} d u d \lambda
$$

$$
\rightarrow \begin{cases}\text { reconstruction filter : } & g(u)=\int_{-\infty}^{+\infty}|k| \cdot \exp (2 \cdot \pi \cdot i \cdot u \cdot k) d k \\ \text { convolution: } & q_{B}(u, \lambda)=\int_{-\infty}^{+\infty} g(u-v) \cdot \frac{A+\frac{C}{B} \cdot v}{\sqrt{B^{2}+v^{2}}} \cdot p_{B}(v, \lambda) d v \\ \text { back-projection : } & f(x, y)=\frac{1}{2} \cdot \int_{0}^{2 \pi}\left(\frac{B}{A+S}\right)^{2} \cdot q_{B}\left(\frac{B}{A+S} \cdot(C+R), \lambda\right) d \lambda\end{cases}
$$

Feldkamp, Davis and Kress (FDK) method for cone beam CT

reconstruction filter

$$
g(u)=\int_{-\infty}^{+\infty}|k| \cdot \exp (2 \cdot \pi \cdot i \cdot u \cdot k) d k
$$

convolution

$$
q_{B}(u, w, \lambda)=\int_{-\infty}^{+\infty} g(u-v) \cdot \frac{A+\frac{C}{B} \cdot v}{\sqrt{B^{2}+v^{2}+w^{2}}} \cdot p_{B}(v, w, \lambda) d v
$$

back-projection

$$
f(x, y, z) \approx \frac{1}{2} \cdot \int_{0}^{2 \pi}\left(\frac{B}{A+S}\right)^{2} \cdot q_{B}\left(\frac{B}{A+S} \cdot(C+R), \frac{B}{A+S} \cdot z, \lambda\right) d \lambda
$$

where
$x=y=0$ at the rotation axis, \mathbf{O}
$u=w=0$ at the illumination center, \mathbf{L}
$z=0$ at the intersection point of the rotation axis and the plane of $w=0$

