Feldkamp, Davis and Kress (FDK) method for cone beam CT

Kak and Slaney (1988, page 104-107)

projection on the planes perpendicular to v-axis

$$
\begin{array}{ll}
p_{B}(u, w, \theta) & : \text { observed projection at } v=B \\
p_{A}(r, t, \theta)=p_{B}\left(\frac{B}{A} \cdot r, \frac{B}{A} \cdot t, \theta\right) & : \text { equivalent projection at } v=A
\end{array}
$$

convolution (filtering)

$$
q_{A}(r, t, \theta)=\int_{-\infty}^{+\infty} g(r-\rho) \cdot \frac{A \cdot p_{A}(\rho, t, \theta)}{\sqrt{A^{2}+\rho^{2}+t^{2}}} d \rho
$$

where $g(r)=\int_{-\infty}^{+\infty}|\kappa| \cdot \exp (2 \cdot \pi \cdot i \cdot r \cdot \kappa) d \kappa:$ reconstruction filter back-projection
$f(x, y, z) \approx \frac{1}{2} \cdot \int_{0}^{2 \pi}\left(\frac{A}{A+S}\right)^{2} \cdot q_{A}\left(\frac{A \cdot R}{A+S}, \frac{A \cdot z}{A+S}, \theta\right) d \theta$
where $\binom{R(x, y, \theta)}{S(x, y, \theta)}=\left(\begin{array}{rr}\cos \theta, & \sin \theta \\ -\sin \theta, & \cos \theta\end{array}\right)\binom{x}{y}$

equations for the FDK method

notable property of the reconstruction filter

$$
\begin{aligned}
g(\alpha \cdot \beta) & =\int_{-\infty}^{+\infty}|\kappa| \cdot \exp (2 \cdot \pi \cdot i \cdot \alpha \cdot \beta \cdot \kappa) d \kappa \\
& =\int_{-\infty}^{+\infty}\left|\frac{\kappa^{\prime}}{\alpha}\right| \cdot \exp \left(2 \cdot \pi \cdot i \cdot \beta \cdot \kappa^{\prime}\right) \cdot \frac{1}{\alpha} d \kappa^{\prime}=\frac{1}{\alpha^{2}} \cdot g(\beta)
\end{aligned}
$$

filtered projection of $p_{B}(u, w, \theta)$

$$
\begin{aligned}
q_{B}(u, w, \theta) & =\left(\frac{A}{B}\right)^{2} \cdot q_{A}\left(\frac{A}{B} \cdot u, \frac{A}{B} \cdot w, \theta\right) \\
& =\left(\frac{A}{B}\right)^{2} \cdot \int_{-\infty}^{+\infty} g\left(\frac{A}{B} \cdot u-\rho\right) \cdot \frac{A \cdot p_{A}\left(\rho, \frac{A}{B} \cdot w, \theta\right)}{\sqrt{A^{2}+\rho^{2}+\left(\frac{A}{B} \cdot w\right)^{2}}} d \rho \\
& =\left(\frac{A}{B}\right)^{2} \cdot \int_{-\infty}^{+\infty} g\left(\frac{A}{B} \cdot(u-v)\right) \cdot \frac{A \cdot p_{A}\left(\frac{A}{B} \cdot v, \frac{A}{B} \cdot w, \theta\right)}{\sqrt{A^{2}+\left(\frac{A}{B} \cdot v\right)^{2}+\left(\frac{A}{B} \cdot w\right)^{2}}} \cdot \frac{A}{B} d v \\
& =\left(\frac{A}{B}\right)^{2} \cdot \int_{-\infty}^{+\infty}\left(\frac{B}{A}\right)^{2} \cdot g(u-v) \cdot \frac{A \cdot p_{B}(v, w, \theta)}{\sqrt{B^{2}+v^{2}+w^{2}}} d v \\
& =\int_{-\infty}^{+\infty} g(u-v) \cdot \frac{A \cdot p_{B}(v, w, \theta)}{\sqrt{B^{2}+v^{2}+w^{2}}} d v
\end{aligned}
$$

back-projection using $q_{B}(u, w, \theta)$

$$
\begin{aligned}
f(x, y, z) & \approx \frac{1}{2} \cdot \int_{0}^{2 \pi}\left(\frac{A}{A+S}\right)^{2} \cdot\left(\frac{B}{A}\right)^{2} \cdot q_{B}\left(\frac{B}{A} \cdot \frac{A \cdot R}{A+S}, \frac{B}{A} \cdot \frac{A \cdot z}{A+S}, \theta\right) d \theta \\
& =\frac{1}{2} \cdot \int_{0}^{2 \pi}\left(\frac{B}{A+S}\right)^{2} \cdot q_{B}\left(\frac{B \cdot R}{A+S}, \frac{B \cdot z}{A+S}, \theta\right) d \theta
\end{aligned}
$$

implementation of the FDK method

given parameters and data
parameters
A and $B \quad$: distance from source to rotation axis and to detector array
δ_{u} and $\delta_{w} \quad$: interval of detectors along u - and w-direction
N_{u} and N_{w} : number of detectors along u - and w-direction
O_{u} and O_{w} : center position of detector array along u - and w-direction θ_{0} and $N_{\theta} \quad$: offset angle and total angular steps of the sample rotation data

$$
P_{j, l, m}=p_{B}\left(u_{j}, w_{l}, \theta_{m}\right)
$$

where $\quad u_{j}=\delta_{u} \cdot\left(j-O_{u}\right) \quad$ for $j=0, \cdots, N_{u}-1$

$$
w_{l}=\delta_{w} \cdot\left(l-O_{w}\right) \quad \text { for } l=0, \cdots, N_{w}-1
$$

$$
\theta_{m}=\theta_{0}+2 \cdot \pi \cdot m / N_{\theta} \text { for } m=0, \cdots, N_{\theta}-1
$$

numerical integration
value of the reconstruction filter under the Nyquist frequency

$$
\begin{aligned}
G_{j} & =g\left(\delta_{u} \cdot j\right) \\
& \approx \int_{-1 /\left(2 \cdot \delta_{u}\right)}^{+1 /\left(2 \cdot \delta_{u}\right)}|\kappa| \cdot \exp \left(2 \cdot \pi \cdot i \cdot \delta_{u} \cdot j \cdot \kappa\right) d \kappa \\
& =\frac{1}{\delta_{u}^{2}} \cdot \begin{cases}1 / 4 & \text { for } j=0 \\
-1 /(\pi \cdot j)^{2} & \text { for } j=\text { odd number } \\
0 & \text { for } j=\text { even number }\end{cases}
\end{aligned}
$$

convolution

$$
\begin{aligned}
Q_{j, l, m} & =q_{B}\left(u_{j}, w_{l}, \theta_{m}\right) \\
& \approx \delta_{u} \cdot \sum_{k=0}^{N_{u}-1} g\left(u_{j}-v_{k}\right) \cdot \frac{A \cdot p_{B}\left(v_{k}, w_{l}, \theta_{m}\right)}{\sqrt{B^{2}+v_{k}^{2}+w_{l}^{2}}} \\
& =\delta_{u} \cdot \sum_{k=0}^{N_{u}-1} G_{j-k} \cdot \frac{A \cdot P_{k, l, m}}{\sqrt{B^{2}+v_{k}^{2}+w_{l}^{2}}}
\end{aligned}
$$

back-projection

$$
\begin{aligned}
f(x, y, z) & \approx \frac{1}{2} \cdot \frac{2 \cdot \pi}{N_{\theta}} \cdot \sum_{m=0}^{N_{\theta}-1}\left(\frac{B}{A+S_{m}}\right)^{2} \cdot q_{B}\left(\frac{B \cdot R_{m}}{A+S_{m}}, \frac{B \cdot z}{A+S_{m}}, \theta_{m}\right) \\
& \approx \frac{\pi}{N_{\theta}} \cdot \sum_{m=0}^{N_{\theta}-1}\left(\frac{B}{A+S_{m}}\right)^{2} \cdot I_{m}\left(\frac{B \cdot R_{m}}{A+S_{m}}, \frac{B \cdot z}{A+S_{m}}\right)
\end{aligned}
$$

where $I_{m}(u, w)$: interpolated value of $q_{B}\left(u, w, \theta_{m}\right)$ using $Q_{j, l, m}$

$$
\binom{R_{m}}{S_{m}}=\binom{R\left(x, y, \theta_{m}\right)}{S\left(x, y, \theta_{m}\right)}=\left(\begin{array}{rr}
\cos \theta_{m}, & \sin \theta_{m} \\
-\sin \theta_{m}, & \cos \theta_{m}
\end{array}\right)\binom{x}{y}
$$

reconstructed image of $f(x, y, z)$
imaging area

$$
x^{2}+y^{2} \leq\left\{\begin{array}{lll}
\left(A-B \cdot \frac{z}{w_{0}}\right)^{2} & \text { for } \frac{A}{B} \cdot w_{0} \leq z \leq \frac{A-C}{B} \cdot w_{0} & \text { : cone } \\
C^{2} & \text { for } \frac{A-C}{B} \cdot w_{0} \leq z \leq \frac{A-C}{B} \cdot w_{N_{w}-1} & \text { : cylinder } \\
\left(A-B \cdot \frac{z}{w_{N_{w}-1}}\right)^{2} & \text { for } \frac{A-C}{B} \cdot w_{N_{w}-1} \leq z \leq \frac{A}{B} \cdot w_{N_{w}-1} & \text { : cone }
\end{array}\right.
$$

where $\quad C=\min \left(-\frac{A \cdot u_{0}}{\sqrt{B^{2}+u_{0}^{2}}}, \frac{A \cdot u_{N_{u}-1}}{\sqrt{B^{2}+u_{N_{u}-1}^{2}}}\right)$
pixel size (exactly, interval of grid points) along x-, y - and z-direction

$$
\left(\begin{array}{cc}
\delta_{x} & \text { and } \\
\delta_{y}
\end{array}\right)=\frac{A}{B} \cdot\binom{\delta_{u}}{\delta_{w}}
$$

calculation technique
convolution by the discrete Fourier transform (DFT)
when

$$
\begin{aligned}
& G_{j}^{\prime}=G_{j-N_{u}} \\
& H_{j}^{\prime}= \begin{cases}0 & \text { for } j=0, \cdots, 2 \cdot N_{u}-1 \\
H_{j-N_{u}} & \text { for } j=0, \cdots, N_{u}-1\end{cases}
\end{aligned}
$$

and

$$
\binom{\hat{G}_{k}}{\hat{H}_{k}}=\sum_{j=0}^{2 \cdot N_{u}-1}\binom{G_{j}^{\prime}}{H_{j}^{\prime}} \cdot \exp \left(-2 \cdot \pi \cdot i \cdot \frac{k \cdot j}{2 \cdot N_{u}}\right) \text { for } k=0, \cdots, 2 \cdot N_{u}-1
$$

then

$$
\sum_{k=0}^{N_{u}-1} G_{j-k} \cdot H_{k}=\frac{1}{2 \cdot N_{u}} \cdot \sum_{k=0}^{2 \cdot N_{n}-1} \hat{G}_{k} \cdot \hat{H}_{k} \cdot \exp \left(2 \cdot \pi \cdot i \cdot \frac{j \cdot k}{2 \cdot N_{u}}\right) \text { for } j=0, \cdots, N_{u}-1
$$

bi-linear interpolation of $q_{B}\left(u, w, \theta_{m}\right)$ using $Q_{j, l, m}$
when

$$
\begin{aligned}
& j=\operatorname{floor}\left(O_{u}+u / \delta_{u}\right) \\
& l=\operatorname{floor}\left(O_{w}+w / \delta_{w}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \varepsilon_{u}=O_{u}+u / \delta_{u}-j \\
& \varepsilon_{w}=O_{w}+w / \delta_{w}-l
\end{aligned}
$$

then

$$
\begin{aligned}
I_{m}(u, w)=Q_{j, l, m} & +\left(Q_{j+1, l, m}-Q_{j, l, m}\right) \cdot \varepsilon_{u} \\
& +\left(Q_{j, l+1, m}-Q_{j, l, m}\right) \cdot \varepsilon_{w} \\
& +\left(Q_{j+1, l+1, m}-Q_{j, l+1, m}-Q_{j+1, l, m}+Q_{j, l, m}\right) \cdot \varepsilon_{u} \cdot \varepsilon_{w}
\end{aligned}
$$

calculation procedure
$F_{x, y, z}$: computer memory for the reconstructed value of $f(x, y, z)$
FDK method :
read parameters
calculate constant values and allocate computer memory
do $F_{x, y, z}=0$ for each (x, y, z)
do the followings for each m :
$\operatorname{read} P_{j, l, m}$ for each (j, l)
calculate $Q_{j, l, m}$ for each (j, l) by the fast Fourier transform (FFT)
do

$$
F_{x, y, z}+=\left(\frac{\pi}{N_{\theta}} \cdot\left(\frac{B}{A+S_{m}}\right)^{2} \cdot I_{m}\left(\frac{B \cdot R_{m}}{A+S_{m}}, \frac{B \cdot z}{A+S_{m}}\right)\right)
$$

for each (x, y, z) inside the imaging area

