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ABSTRACT

The technique of investigating 3-dimensional interconnections and the shapes of crystals in a rock by
X-ray computerized tomography (CT) and image analysis was developed using a graphic granite
specimen as an example. Fifty 2-dimensional tomographic images (slices) of the graphic granite were
obtained ‘non-destructively’ using a medical X-ray CT scanner. Since a CT value of the specimen was
decreased with increasing cross-sectional sample area by the effect of beam-hardening, the CT value
was corrected using the area of each slice. Binary images of the slices were made comparing one of
them with a thin-section of the slice. Using the binary images, connection analysis of quartz rods in the
graphic granite specimen was performed on the basis of percolation theory (cluster labelling). This
analysis showed that at least 89.9% of the quartz rods were connected in three dimensions.
Furthermore, the 3-dimensional shape of the quartz rods was analysed using the 2-point correlation
function calculated from the binary images. The average shape of the quartz rods was obtained by

fitting an ellipsoid to the high-value region of the 2-point correlation function. The elongation axis of

the ellipsoid agreed well with the crystallographic c-axes of the quartz rods.

Kevyworbs: X-ray CT, 3-dimensional image analysis, graphic granite, cluster labelling, 2-point correlation

function.

Introduction

IN the Earth Sciences, textures in rocks are
examined in two dimensions using thin-sections
or polished sections. Sometimes, 2-dimensional
investigation is enough to quantify 3-dimensional
characteristics of texture. For example, if an
appropriate model of crystal shape is assumed, we
can determine a 3-dimensional crystal size
distribution from a 2-dimensional distribution by
stereology (e.g. Cashman and Marsh, 1988).
However, many features of the 3-dimensional
structure cannot be investigated by 2-dimensional
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observation. A 3-dimensional network structure,
such as a pore network, is often interpreted as
separate pores by 2-dimensional observation.
Also, interconnection of crystals in three dimen-
sions cannot be recognized by 2-dimensional
analysis. The interconnections of crystals
contain significant information relating to the
origins of the rocks, e.g. the process of magma
differentiation (Philpotts et al., 1998). Therefore,
it is important to develop the technique to analyse
a 3-dimensional network structure.

There are some techniques to investigate the 3-
dimensional internal structure of rocks. For
example, Bryon er al. (1995), Cooper and
Hunter (1995) and Marschallinger (1998) demon-
strated 3-dimensional reconstructions of the
internal structures in rock samples using succes-
sive digitized images acquired by serial thin-
sectioning or lapping. Philpotts er al. (1998)
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discovered the 3-dimensional network structure
(chains) of plagioclase phenocrysts in a basalt
specimen by a partial melting experiment.
However, the technique of serial polishing needs
skill and time. Also, the techniques of partial
melting or selective dissolution with acids or
alkalis are not appropriate for every sample.
Nowadays, we can observe the internal
structures of rocks by non-destructive methods,
such as X-ray computerized tomography (CT).
X-ray CT was invented and developed in the
medical field in the 1970s and has been applied to
geological samples in recent years. For example,
by the X-ray CT method, we can analyse directly
the 3-dimensional crystal-size distribution, crystal
spatial disposition (Denison et al., 1997; Denison
and Carlson, 1997), and structure of cracks or
pores (Raynaud et al., 1989; Nakano et al., 1992;
Nakashima et al., 1997). However, the techniques
to investigate the 3-dimensional connection and
shape of crystals have not become well estab-
lished. Furthermore, X-ray CT images generally
have an error resulting from beam-hardening (see
below). This error affects precise analysis. In this
study we developed a technique to correct the
error and to investigate the 3-dimensional
connection and shape of crystals in a rock by

combining the X-ray CT method and image
analysis. The connection analysis was based on
the technique of pore-network analysis proposed
by Nakano et al. (1992). Graphic granite was
selected as an example for these analyses because
quartz rods in graphic granite are known to
connect to each other as illustrated in the
following section.

Specimen and interconnection of quartz rods

We used the specimen of graphic granite shown
in Fig. 1 (Sample GSJ-R6052, from the
Geological Survey of Japan). This specimen
was obtained by H. Matsubara (Matsubara, 1956)
from the Shiozawa district in Ishikawa town,
Fukushima Prefecture, Japan. Around Ishikawa,
there are many granitic pegmatites within a
granitic body intruded into the Abukuma
metamorphic belt. The specimen was collected
from a graphic granite layer in one of the
pegmatite bodies (Matsubara, 1956). The K-Ar
age of the surrounding granitic body is
90—100 m.y. (Kawano and Ueda, 1967).

The specimen consists of quartz rods and host
alkali-feldspar (microcline microperthite). In the
specimen, most of the quartz rods show

X-ray CT images (slices)

no.50

50 slices
(25 mm)

FiG. 1. Specimen of graphic granite (GSJ-R6052) with coordinate system for the X-ray CT (left), and three slices

(right). Fifty slices parallel to the XY-plane were obtained along the Z-axis. The dark parts are quartz rods both in the

photograph of the specimen and in the CT images. The areas surrounded by black lines in the CT images were used
for the three-dimensional analysis and correspond to the areas of images shown in Fig. 4.
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FiG. 2. Photographs of the thin-section of the X-ray CT image no. 16. in crossed polars. () Simultaneous extinction

of alkali feldspar host. The bright parts are quartz grains. (b) Simultaneous extinction of most of the quartz rods. The

quartz rod surrounded by the broken line has three domains with different crystallographi ¢ orientations. The dark

domain in the rod shows the simultaneous extinction with most of the quartz rods. The dark circular region near the
corner of the box (broken line) was lost in the process of making the thin-section.

simultaneous extinction (Fig. 2) as reported in
many previous studies (e.g Wahlstrom, 1939;
Simpson, 1962). Furthermore, we confirmed,
using a precession camera, that the elongation
direction of the quartz rods correspond approxi-
mately with the crystallographic c-axis of quartz.
In order to find the cause of the simultaneous
extinction, Simpson (1962) performed successive
surface grinding of a graphic granite specimen
and showed interconnections of the quartz rods.
He concluded that the simultaneous extinction
occurs because all quartz rods are parts of the
same crystal Therefore, we concluded that
graphic granite was a good choice of material to
investigate 3-dimensional crystal interconnection.

X-ray CT

X-ray CT is a non-destructive technique used to
determine tomographic maps of the X-ray linear
attenuation coefficient in an object. We describe
the 2-dimensional X-ray CT images as ‘slices’.
The brightness in the slices (e.g. in Fig. 1) shows
the linear attenuation coefficient, which depends
on the density and chemical composition of the
object and the energy of the incident X-ray beam
(Koch and MacGillavry, 1962; McCullough,
1975; Denison et al., 1997).

The linear attenuation coefficient obtained by
X-ray CT is generally called the ‘CT value’. Itis a
dimensionless number normalized by the linear
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attenuation coefficient of water as defined by the
following equation

CT value = =5 5 1000 (1)

W

where p and WM, are the linear attenuation
coefficients of the object and water, respectively.

We used a medical X-ray CT scanner (Hitachi
CT-W2000) to obtain the slices of the specimen.
The scanner belongs to the third-generation type
adopting a continuous rotation method. The
continuous (polychromatic) X-ray beam from a
target of Mo-W alloy was used. The voltage and
current of the X-ray tube were 120 kV and
175 mA respectively. The X-ray exposure time
for each slice was 4.0 s. We used the 3-dimen-
sional coordinate system for acquisition of the
X-ray CT images shown in Fig. 1 (XYZ-axes).
The slices lay in the XY-plane. The size of the
voxel (volume element in three dimensions;
corresponding to ‘pixel’ in two dimensions) on
the XY-plane was 0.313 x 0.313 mm®, which was
considered as the in-plane resolution in the slices.
The thickness of each slice was 1.0 mm. The
specimen was automatically moved along the
Z-axis by 0.5 mm after acquisition of each slice.
Thus each slice overlaps by 0.5 mm in thickness
with the adjacent slices. Fifty 16-bit images
(slices) along the Z-axis were obtained in all. It
took 28 min to acquire 50 slices.
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With the graphic granite specimen, the CT
value of alkali feldspar (~2080) was greater than
that of quartz (~1980), though the density of alkali
feldspar is lower than that of quartz. The higher
CT value of alkali-feldspar depends on high
attenuation by K (Raynaud er al, 1989). As
described above, the linear attenuation coefficient
is a function not only of density but also of
chemical composition and the energy distribution
of the X-ray beam. We confirmed the attenuation
coefficients of alkali feldspar and quartz using the
formulae and attenuation coefficients of
McCullough (1975) and Hubbell et al. (1980) at
an X-ray energy of <120 keV.

Image analysis techniques

Correction of beam-hardening

The CT value obtained using a continuous
(polychromatic) X-ray beam is influenced by
the beam-hardening (Denison et al., 1997). The
low-energy component of X-ray photons is more
absorbent than the high-energy component.
Thus, most of the low-energy photons are
absorbed at the periphery of a specimen just
after entry of the X-ray beam into the specimen.
In the X-ray CT technique, image reconstruction
is performed using the sum total of the photons
belonging to all energy levels as intensity data;
thus the linear attenuation coefficient at the
periphery, where many photons are absorbed, is
calculated as a high value even if the specimen

Connected

Not connected

Not connected

FiG. 3. Definition of connection of voxels occupied by

quartz crystal in the three-dimensional image.
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is homogeneous. This beam-hardening causes
two types of errors in the CT value. One error
arises from the heterogeneity of the CT value
within each slice. The CT value at the centre of
the slice is lower than that at the periphery even
in the homogeneous material. The heterogeneity
within each slice was not seriously affected by
omitting the periphery from the analysed area
(Fig. 1 right). The other error is the difference in
the CT value between different slices. A slice
with large cross-section area (e.g. no. 50 in
Fig. 1) has a lower CT value than a slice with
small area (e.g. no.1 in Fig. 1). In this study, the
difference in the CT values amongst the slices
was very large, and we had to correct for it. As
shown in detail later, we found a simple
relationship between the error (difference of
CT value) and the cross-sectional area of the
slice. The increase of the CT value was
proportional to the decrease of the area of the
slice. We corrected the CT value of each slice in
proportion to the decrease of the area.

Thresholding

In order to perform 3-dimensional analysis, we
made binary images of the fifty slices using an
ordinary thresholding (segmentation) technique of
a grey level image (e.g. Dilks and Graham, 1985),
and identified the quartz rods as follows. Firstly,
the binary image of slice no. 16 was made by
comparing it carefully with the thin-section
corresponding to the slice (Fig. 2). Since the CT
value at the edge of the specimen becomes much
larger owing to the effect of the beam-hardening
(and because of the Gibbs’ phenomenon relating
to the algorithm of image reconstruction) as
described above, we cut out an area of
28 x 28 mm” (90 x 90 voxels) from the original
slice and used it for the 3-dimensional analysis.
Binary images of the other 49 slices were made in
the same way. The cut-out areas on several slices
are shown in Fig. 1 (right).

Connection analysis (Cluster labelling)

We developed software to visualize and analyse
objects from 3-dimensional X-ray CT images
(Nakano and Fujii, 1989a, 1991; Nakano et al.,
1992, 1997). The binary images were used to
analyse the connection of quartz rods. In
percolation theory, the analysis is known as the
‘cluster labelling method’ (Stauffer, 1985). In this
analysis, connection of two adjacent voxels in the
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FiG. 4. Grey level images and binary images before and after the correction of CT value. Only 11 of 50 slices are
shown (every 5 slices). Each image consists of 90 x 90 = 8100 voxels (28 x 28 mm?). (a) 16-bit grey level images
before the correction. (b) Binary image before the correction. (c) 16-bit grey level images after the correction. (d)
Binary image after the correction. In the binary images, the black region indicates the quartz rods which belong to
the largest cluster while the grey indicates the quartz rods which do not belong to the largest cluster in Fig. 6f.

quartz rods is evaluated as shown in Fig. 3. When
two voxels shared a face, we considered them as
connecting voxels. When two voxels contacted
only at a vertex or an edge, we considered them as
separate voxels. This criterion is commonly used in
the connectivity analysis (Stauffer, 1985; Nakano
and Fujii, 1989b). We call connected voxels a
‘cluster’. The extent of interconnection of quartz
rods was assessed quantitatively using the term
‘connectivity’ which is a volume fraction relating
the largest cluster of quartz rods to the volume of
all quartz rods (Nakano and Fujii, 1989b):

Volume of the largest cluster

sctivity = 2
Connectivity Total volume of all quartz rods )
From this definition, the connectivity becomes

1 when all quartz rods are connecting in the

specimen.

Shape analysis

In order to analyse the 3-dimensional shape of
quartz rods, a 2-point correlation function (e.g.
Berryman, 1985; Berryman and Blair, 1986) was
calculated in three dimensions. The 2-point
correlation function represents two significant
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Bx) =

spatial correlation features. One is the long-
distance correlation such as the spatial distribu-
tion of minerals in rocks (Morishita and Obata,
1995; Morishita, 1998). In this case, we can
obtain information on the degree of randomness
for individual minerals, the mean distance
between different minerals, etc. The other
feature of the function is the short-distance
correlation about the origin, and it represents the
average shape of an object. We used the latter
feature of the function. In the graphic granite
specimen shown in Fig. 1, the quartz rods seem to
extend (grow) in the same direction; thus it was
expected that the 2-point correlation function of
the quartz rods would show meaningful results
with respect to their average shape. Furthermore,
it is known that the 2-point correlation function is
not strongly influenced by the noise of the image
data; thus it was expected that we could perform
precise shape analysis.

In binary images, each voxel has a value of 1 or
0. Here we define the value of each voxel B(r) in
the T space as follows:

1 when the voxel was in the quartz rods
0 when the voxel was not in the quartz rods
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FiG. 5. (a) Histograms of the CT value for 50 slices (grey level) of 16-bit CT images shown in Fig. 4a (before the CT
value correction ). The horizontal axis indicates the CT value. The vertical axis indicates the frequency of the voxels.
The solid circle on each histogram indicates the peak level of alkali feldspar. () Variation of cross-sectiona | area of

the specimen with slice no. The areas correspond to the number of voxels with CT value >1000.

The 2-point correlation function of quartz is

expressed as

AC(d) = (B(x)  B(r +8)); 4)
where the brackets { )y indicate a volume average
over the spatial coordinate t. In three dimensions,
AC(d) is written as AC(dx, dy, dz). AC(0,0,0),
which is the value at the origin, shows the highest
value and represents the volume fraction of the
object (i.e. the quartz rods). Around the origin,
there is a spatial field having high AC(dx, dy, dz)
values, and the field is considered to represent the
average shape of the objects. In this study, an
ellipsoid was fitted to the field whose AC(dx, dy,
dz) values were greater than or equal to half of

AC(0,0,0) using the method shown in the
Appendix.

Results and discussion
Data correction and thresholding
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Three slices of a 2-dimensional X-ray CT image
are shown in Fig. 1 (right). As described above,
there was a large difference in the CT value
between the slices. Figure 4a shows the 11 slices
(every 5 slices) of grey-scale images (90 x 90
voxels) before the CT value correction. If we
carry out thresholding with a fixed threshold value
(grey level), we obtain the binary images shown
in Fig. 4b. The slices having a larger slice number
show a higher volume fraction of quartz rods.
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This trend is not consistent with what we see in
thin-sections. From our observations of several
thin-sections, the volume fraction of quartz rods
in the specimen is almost the same from slice no.
1 tono. 50. Figure 5a shows histograms of the CT
value for all slices. The solid circle at the top of
the each histogram indicates the CT value of
alkali feldspar. We recognize the systematic shift
in peak position of alkali feldspar. Figure 5b
shows the variation of the cross-sectional area of
the slices. The areas of the slices increase with
increasing slice number. Since the variation of the
area is almost linear with the slice no. (Fig. 5b),
we considered that the linear shift in the peak
position of the histogram (Fig. 5a) was caused by
the beam-hardening, depending on the variation
of the cross-sectional sample area Thus we
corrected the CT value of all slices by shifting
the histograms as shown in Fig. 5a, on the
assumption that the peak position of alkali-
feldspar must be the same in all slices. The
corrected (shift) value of each slice was
determined as (maximum corrected value) x (50
— slice no.)/49.

The corrected grey level images are shown in
Fig. 4c and the binary images obtained by the
thresholding are shown in Fig. 4d. The threshold
CT value extracting only quartz (2024) was
determined by comparing slice no. 16 with its
thin-section. After the data correction, the area of
the quartz rods become almost the same for all
slices (Fig. 4d).

Connection analysis (cluster labelling)

Figure 6 shows the result of the 3-dimensional
connection analysis (cluster labelling) using the
binary images. The sub-figures show a bird’s-eye
view reconstructed using: (a) 1 slice; (b) 5 slices;
(¢) 10 slices; (d) 20 slices; (e) 30 slices; and
(f) 50 slices, respectively. The left column of this
figure shows all the quartz rods and the right
column shows only the largest cluster of
connected quartz rods. The sub-figures in the
right column (a—f) indicate the results of
connection analysis calculated individually
using the data from 1, 5, 10, 20, 30 and 50
slices, respectively. Results (a—e) are not part of
result f analysed using 50 slices. We have
defined the ‘connectivity’ in equation 2 as the
volume fraction of the largest cluster of the
quartz rods (Fig. 6, right) to all quartz rods
(Fig. 6, left). The calculated connectivities were
(a) 0.133, (b) 0.160, (c) 0.337, (d) 0.379,
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Fic. 6. ‘Bird’s eye view’ representing 3-dimensional
connection analysis (cluster labelling) of quartz rods.
The left column shows all the quartz rods in the analysed
area while only the largest cluster of quartz rods is
shown in the right column. Each figure shows the image
constructed using slices of (a) no. 1, (») no. 15, (¢) no.
1-10, (d) no. 1-20, (e) no. 1—30 and (f) no. 1-50,
respectively. Numerical values indicate the connectivity
of quartz rods defined by equation 2. In (a—f), the top
slice is the CT image no. 1. The XYZ-axes are identical
to those of Fig. 1. The spatial extent of (f) is 28 mm
(X)x 28 mm (Y) X 25 mm (Z).

(e) 0.794 and (f) 0.899, respectively. With up
to five slices (Fig. 6b; 2.5 mm in the
Z-direction), connectivity did not increase.
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Between (b) and (c), connectivity started to
increase. With 50 slices (Fig. 6f; 25 mm in the Z-
direction), almost all quartz rods (89.9%) were
found to be connected. In Fig. 6f, the separate
quartz rods (10.1%), which did not belong to the
largest cluster, were located at the corners of the
analysed space (28 x 28 x 25 mm®). These sepa-
rate rods are also shown in Fig. 44 in grey, and
we can confirm that they are located at the
corners. Thus, such quartz rods would be
included in the largest cluster if the analysed
space became larger. This result is consistent
with the hypothesis of Simpson (1962) that all
quartz rods are parts of the same crystal. By
image analysis we were able to assess the
interconnection quantitatively.

We could also investigate the structures of the
junctions of connected quartz rods in XZ-planes
synthesized by image processing (Fig. 7) though
we could not clearly confirm those structures in
XY-planes (X-ray CT images). Figure 7 shows
how the quartz rods join or separate. Such
information will be important in revealing the
crystal growth mechanism of the quartz rods and
the origin of graphic granite. These subjects (e.g.
Fenn, 1986; Lentz and Fowler, 1992; Stel, 1992)
will be discussed in a separate paper. By image
analysis, we can obtain tomographic (2-dimen-
sional) images of sections cut in any orientation
and it becomes easy to investigate the structures.
This is one of the significant points that advanced
the technique compared to the serial surface
grinding of Simpson (1962).

Thus, the combination of X-ray CT and
3-dimensional image analysis is a powerful tool
in analysing the 3-dimensional interconnection of a
mineral. However, we cannot identify the crystal-
lographic orientation by these techniques. For
example, even the quartz rods that did not show
simultaneous extinction in Fig. 26 were also
thought to be components of the largest cluster
shown in Fig. 6f However, this result is not a
mistake of the above connection analysis. The
quartz rod surrounded by the broken line in Fig. 2b
consists of two domains some of which show

simultaneous extinction with some of the quartz
rods and some of which do not. Therefore, the
quartz rods which do not show simultaneous
extinction also touch the largest cluster, and the
conclusion on the connection was true. The
connectivity obtained by X-ray CT carries no
information on the crystallographic orientations
because the X-ray CT technique is not based on
XRD but on X-ray absorption. Conversely, this
aspect will be a good point to analyse the
interconnection of poly-crystals having different
crystallographic orientations, e.g. chains (network
structure) of plagioclase phenocrysts in basalt
discovered by Philpotts et al. (1998) in a partial
melting experiment.

Shape analysis

We calculated a 2-point correlation function
AC(dx, dy, dz) using the binary images in order
to analyse the 3-dimensional shape of the quartz
rods (Fig. 8). The value at the origin AC(0,0,0) was
0.232, which is the highest value and represents the
volume fraction of quartz. In the dz = 0 slice, we
can recognize the high AC(dx, dy, dz) area around
the origin (bright area). With decreasing dz, the
area having the high AC value moves away from
the centre point, and the AC value decreases
gradually. Since the 2-point correlation function is
symmetrical with respect to the origin (dx, dy, dz)
= (0,0,0), the bright area moves in the opposite
direction in the slices for +1 < dz < +10, though
these slices are not shown in Fig. 8. We carried out
the ellipsoid fitting to the area with high correlation
value >0.116 (bold contours in Fig. 8), which was
half of AC(0,0,0). The fitting was performed by
minimizing or maximizing the 2nd moments
around the axes (Appendix).

The result of the ellipsoid fitting is shown in
Fig. 9. The shape of the quartz rods could be
approximated to an elongated ellipsoid with large
aspect ratio. The elongation axis of the ellipsoid is
considered to correspond with the elongation axes
of the quartz rods with preferred orientation. This
can be confirmed by comparing Figs 9 and 6f.

28

29

26

27w
\%-\

13

A\

FiG. 7. Junctions of quartz rods recognized in binary images on the XZ-plane. The images were synthesized by a
computer using 50 slices (XY-plane) obtained by X-ray CT. The numbers above the images indicate slice numbers
along the Y-axis.
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Fic. 8. Three-dimensional distribution of two-point correlation function AC(dx, dy, dz) of the quartz rods. Each

diagram shows a slice of AC(dx, dy, dz) for fixed dz. The ranges of dx, dy and dz are —18 < dx < +18, —18 < dy <

+18 and —10 < dz < 0, respectively, and the centre point of each diagram is (dx, dy) = (0,0). Since the function is

symmetrical with respect to the origin (dx, dy, dz) = (0,0,0), the slices for +1 < dz < +10 can be derived from the

slices shown in the figure. Contour lines are drawn at an interval of 0.0232 which is 1/10 of AC(0,0,0). The bold line
indicates AC(dx, dy, dz) = 0.116 which is half of AC(0,0,0).
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X

Fic. 9. The average three-dimensional shape of quartz
rods in the specimen derived from an ellipsoid fitting to
the high value area of two-point correlation function
(AC(dx, dy, dz) = 0.116) shown in Fig. 8 The
rectangular cell corresponds to that of Fig. 6f.

values based on the cross-sectional areas of the
specimen.

(2) The cluster labelling technique showed at
least 89.9% of the quartz rods to be connected
with each other in the specimen. This result of
interconnection of quartz rods was consistent with
the previous study by Simpson (1962).

(3) The 2-point correlation function was
calculated in order to investigate the 3-dimen-
sional shape of the quartz rods. The ellipsoid
fitted to the high-value area of the function
represented a very elongated shape whose
elongation axis almost corresponded to the
crystallographic c-axes of the quartz rods.

Furthermore, we confirmed the following
useful points: (1) We can obtain quantitative
information on the connection of crystals using
the ‘connectivity’ value. (2) We can observe the
precise structure of junctions of connected
crystals from various angles by image processing.
(3) We can obtain the average shape and
elongation axis of crystals by 2-point correlation
function and an ellipsoid fitting. (4) All of these
processes can be performed 3-dimensionally and
non-destructively. (5) The techniques are not
time-consuming.
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Appendix

Ellipsoid-fitting to a three-dimensional object

We carried out ellipsoid-fitting to the 3-dimen-
sional object (i.e. high-value region of a 2-point
correlation function) and obtained the directions
of principal axes and the ratios between the radii
of the object (ellipsoid). This fitting was
performed on the assumption that the centre of
balance of the object corresponded with the centre
of the ellipsoid. Firstly, the direction the c-axis of
the ellipsoid was determined by minimizing the
2nd moment around c-axis. Next, the a-axis was
determined by maximizing the 2nd moment
around a-axis. The detailed calculation process
is as follows.

Expression of an ellipsoid

Here we show the fundamental equations which
express an ellipsoid. Internal space within an
ellipsoid was expressed as:

(G @)«

where a, b and c¢ indicate the values of a
coordinate of the point in abc-coordinate
system, and A, B and C indicate the radii on the
a, b and c-axes, respectively (Fig. Ala). In this
appendix we define A<B< C. The volume of the
ellipsoid is expressed as:

V:///dadbdc zgnABC (A2)

The 2nd moment around the origin of the
coordinate axes (a, b and c-axes) is expressed as:

My = / / / (a* + b* + *)dadbde

= é V(4> + B* + C?) (A3)

The 2nd moments around the a, b and c-axes
are expressed as:
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M, B>+ A)
My = / / / (* +d*) pdadbde
M, (@® + %)
(B> + %)
Ll (A49)
(A4*+ BY)

Transformation between the coordinates

Here we show the way to transform a coordinate
belonging to a coordinate system into a coordinate
belonging to other coordinate systems. If the
abc-coordinate system is not the same as the
xyz-coordinate system, i.e. if the angles A, ¢ and 0
in Fig. Alb #0, we have to transform the
coordinates to express the ellipsoid in the
xyz-coordinate system. The transformation of the
coordinate belonging to the abc-coordinate
system can be transformed into the coordinate
belonging to the xyz-coordinate system by the
equation

x
[ ¥ ] = aé, + bé, + cé, (A5)

z

where

sin Acos 0 4 cos Asin ¢ sin 0

é,= | —coshAcosO +sinAsindsinb |,
—cos ¢ cos 0

— gin Asin B + cos Asin ¢ cos 0

ép = cos Asin 0 + sin Asinp cos® | and
—cos ¢ cos 0

cos Acos ¢

é.= | sin kcos ¢ (A6)

sin ¢

for —n< A<, —In<O<dn, —n<O< T



SHAPE OF CRYSTALS IN GRAPHIC GRANITE

c

b

Fic. Al. Coordinate system expressing an ellipsoid. The sign of the Z-axis is reversed. (a) An ellipsoid and its
principal axes. (b) The generalized coordinate system of ellipsoid in the case where the abc-axes of the ellipsoid do

not correspond to the XYZ-axes of the observation coordinate system.

Image data

Image data are constructed in the xyz-coordinate
system and the origin of the coordinate system
does not lie at the centre of the object. Thus, as a
simple calculation, we moved the origin of the
coordinate system to the centre (of gravity) of the
object. The centre of gravity of the object is
expressed as a vector in the xyz-coordinate system:

X;
Y; (A7)
1\ Z;

- 1 &
Ry =—
0 N2

where N is the number of voxels which belong to
the object, and X, Y and Z are the values of the
coordinate of the ith voxel. In the following
calculations, this point (coordinate) is regarded as
the centre of the xyz-coordinate system.
Furthermore, the centre point of the ellipsoid
was fixed at the origin of the xyz-coordinate
system. Thus we transformed all the coordinates
in the old xyz-coordinate system into the new
coordinates as follows:

Xi X; .
fi=|lyv|=]|Y]|—-Ro (A8)
Zi Z[

Using equation A6, we can transform the
coordinate of each voxel in xyz-coordinate
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system into the coordinate in abc-coordinate
system

Fl’ = a,»é’a + biéb + CiéLv (A9)

The volume of the object and the 2nd moment
around the origin of the coordinate axes are
expressed as;

V= NA (A10)

N N
My=) (@ +b]+ A=) [EA=LA (Al

i=1 i=1

where A indicates the volume of each voxel and
Lg is

N
Li=) (x+y+z)  (A12)
i=1

From equations A3, A10 and All, we can
obtain

A% + B® + C* = 5My/V = 5Ly/N (A13)

Determination of the c-axis

From the calculations above we established the
essential values of the object. Here we determine
the c-axis of the object. Only the angles A and ¢
are involved in these calculations. The angle 0 is



S.IKEDA ETAL.

irrelevant. From equations A6, A8, A9, A10 and
All, the 2nd moment around the c-axis is
expressed as:

N

M, = ﬁ:(afwz A= Z(lr,l . )

i=l1

i=
N

A =My= (F-

i=1

My — &.)’A (A14)

[
M<

[
5
Mz

{(x; cos A+ y;sin A) cos ¢ + z; sin p}2A
1

We determined A and ¢ which minimizes the
value of M.. From equations A4 and A13, we can
determine

A’ + B> = 5M,/V = 5L/N (A15)
where

L. = MJA (A16)

Finally, from equations A13 and A16, we can
determine

C*=5(Ly — LN (A17)

and then, we can determine the radius of C.

Determination of the a and b-axes

In the last section we determined the direction of
the c-axis (i.e. the angles A and ¢) and radius C.
In this section, we determine the angle 0 by
maximizing the 2nd moment around the g-axis.
Maximizing the 2nd moment around the a-axis
(M,) is equivalent to minimizing the 2nd moment
around the b-axis (M,). Then we determine the
radii B and C.

The 2nd moments around the a and b-axes are
expressed as: (see equations Al8 to 21 below)

N N N
M= B+ A=Y (B ) A= Mo— > @A
i=1 i i=1

i=1

N N
=Mo— Y (¥;8)°A=Mo— Y (hicos0+v;sin0)’A

(A18)
i=1 i=1
= My — Lab(G)A
N
Z(C +d)A = Z(| i) _bz)A My — sz
=1
= Mo — Z(F, 1 8,)’A = My — Z(—h, sin® + v;cos0)°A  (A19)
=1 =1
= Mo - La;,(G :IZ%TE)A
where
N
Lap(0) = "(hicos 0 + v;sin 0)* (A20)
i=1
and
h; = x;sin A— y; cos A
v; = (x;cos A+ y;sin ) sin ¢ — z; cos (A21)

(i=1,

. N)
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We determined 0 (0< 6<m) which minimizes the Finally, from equations A13 and A16, we can
value of L,,. Then we calculated obtain:
Ly = M,/A = Lo — Lay(0) A? =5(Lo — L,)/N
1 2 — —
L= My/A=Lo—Ly(0£3m)  (A22) B =5(Lo—Ly)/N - (A24)

and then, we can determine the radii A and B.
From equations A4 and A13, we can obtain

B*+C*=5M,/V =5L,/N
C*+ 4> =5M,,/V =5L,/N (A23)
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