スターダスト衝突トラックの3次元構造と元素分布: 揮発性成分の推定

土`山明(阪大·理)、中村智樹(九大·理)、岡崎隆秀(阪大·理)、 上杉健太朗(SPring8)、中野司(産総研)、赤木剛(九大·理)、 飯田洋祐(阪大·理)、城後香里(九大·理)、鈴木芳生(SPring8)

衝撃トラック: skyrocket(C2126,2,68,0)

スターダスト計画

NASA の彗星塵採取計画

打ち上げ 第1回星間塵採集 第2回星間塵採集 彗星 Wild 2 接近 地球帰還 初期分析 詳細分析(公募) Feb 07, 1999 Feb-May 2000 Aug-Dec 2002 Jan 02, 2004 Jan 15, 2006 Jan-Jul, 2006 Aug, 2006目的:

- ・太陽系の起源物質をさぐる
- ・惑星間塵(IDP)は彗星起源か?
- ・生命の起源物質は?
 (地球有機物の起源)

・星間塵の探査

ダストの採取法

シリカエアロジェルによる捕獲

密度:5-30 mg/cc 1 x 2 x 3(1) cm³ x 132 セル

衝突速度 △V ~ 6.1 km/sec

ダスト採取 1000 粒子以上 15 µm 以上のサイズ

初期分析による成果のまとめ

・衝突トラック形状の多様性

バルブ: 脆くて微細な粒子(ナノサイズ)の集合体が破裂 終端粒子: 結晶質の粒子(ミクロンサイズ)

・突入した彗星塵粒子

オリジナルな粒子(組織・均質性など)の再構成は困難 バルク化学組成はほぼ太陽系における元素存在度

- ・高温生成鉱物粒子
 CAI類似の鉱物粒子など
 太陽系の同位体組成
 ⇒中心星近傍の高温領域から外縁の低温領域への物質の混合
- ・シリカエアロジェルとの反応
 GEMS*(星間塵候補物質)類似物質の起源?
 * 金属鉄・硫化鉄微粒子を含む珪酸塩ガラス
- ・有機物の発見

Nに富む有機物 ⇒ 地球生命との関連?

Ref: Science, Dec 15, 2006

放射光を用いた衝突トラックの分析(SPring-8)

- ・サンプル:4つのキーストーン
 - (a) C2126,1,67,0 (Namekuji)
 - (b) C2126,2,68,0 (Skyrocket)
 - (c) C2126,4,47,0 (Gobou)
 - (d) C2017,1,96,0,0 (lchiro)
- 0.1 mm long, bulbous
- 2.8 mm long, bifurcated carrot
- 0.9 mm long, cylinder to carrot
- 0.6 mm long, cylinder (new track)
- Projection tomography @BL47XU, SPring-8 3次元構造(0.5 or 0.195 µm/pixel)
- ・XRF @BL47XU, SPring-8 元素組成・分布(Feほか12元素:S-Se)

	Namekuji	Skyrocket	Gobou	Ichiro
<i>L_t</i> (μ m)	113	2484	>884	614
D _m (μm)	26.9	141	30.4	29.6
$V_t(\mu m^3)$	3660	779000	>15700	10400
m(Fe) _p (pg)) 0.180	66.6	>>1.26	1.29
<i>m_p</i> (pg)*	0.96	360	>>6.8	6.9

* estimated from $m(Fe)_{p}$ by assuming CI composition for impactor particle

衝突トラックと突入粒子の比較

衝突速度一定 ⇒ 運動エネルギー(E_{kin})は衝突粒子の質量(m_p)のみの関数 仮定:トラック体積(V_t)は E_{kin} に比例 ⇒ V_t は m_p に比例 ⇒ V_t は $m(Fe)_p$ に比例

m(Fe)_p/V_t:衝突トラック形状により変化、*D_m/L_t*と逆相関 ⇒ ズングリしているほど揮発性成分(有機物、氷?)が多い

彗星塵の3成分モデルと衝突トラック体積の推定

・ 彗星塵の3成分モデル (Greenberg 粒子も参考)

Component	Mass	Fe content	Efficiency to from track
Matrix (fragile, IDP-like)	m ₁	W ₁	A ₁
Crystalline (coarse grains)	<i>m</i> ₂	W ₂	A ₂
Volatile (organics, ice?)	m ₃	w ₃ (=0)	A_3

突入粒子の質量: $m_p = m_1 + m_2 + m_3$ 突入粒子の全鉄量: $m(Fe)_p = w_1m_1 + w_2m_2$ 衝突トラックの体積: $V_t = A_1m_1 + A_2m_2 + A_3m_3$ $(A_3 > A_1 > A_2)$ 全鉄量/体積比 $\phi \equiv m(Fe)_p/V_t$

 $\phi_{\rm S}/\phi_{\rm N} = 1.73$

 $\phi'_G / \phi_N = 1.63 < \phi_G / \phi_N$

・ 各衝突トラックの特徴

Namekuji: $m_{2,N} = 0$ (no crystalline grain) Skyrocket: $m_{2,S}/m_{1,S} \sim 1.56$ (XRFより) Gobou: $m_{2,G} = 0$ (みかけ上:終端粒子欠落)

Volatile component がない場合($m_3=0$)

• Skyrocket *vs.* Namekuji: $\phi_S / \phi_N = 1.73$

 $m_{1,S}$ $w_{1,C}$ $m_{1,S}$ ϕ_{S}/ϕ_{N} as a function of A_{2}/A_{1} and w_{2}/w_{1} for $m_{3}=0$ and $m_{p,S}/m_{1,S}\sim 1.56$.

	$\frac{1}{1,3} + \frac{1}{2} 1 - \frac{1}{3} $				
d.	$m_{n,s}$ w_1 $m_{n,s}$	W	$_2/w_1 = 0$ 1	1.5	2
$\frac{\varphi_S}{I} =$	$=\frac{p,s-1}{(s-1)}$	$A_2/A_1 = 0$	1.00 1.56	1.84	2.13
$\phi_{_N}$	$m_{1,S} \rightarrow A_2 \begin{pmatrix} m_{1,S} \end{pmatrix}$	1/10	0.95 1.48	1.75	2.01
$\frac{1}{m} + \frac{1}{\Lambda} \left[1 - \frac{1}{m} \right]$	1/3	0.84 1.32	1.55	1.79	
	$m_{p,S} A_1 \left(m_{p,S} \right)$	1	0.64 1.00	1.18	1.36

 $w_1 < w_2$ でないと $\phi_S / \phi_N = 1.73$ を説明できない(一般には $w_1 \ge w_2$)

• Gobou vs. Namekuji: $\phi'_G / \phi_N = 1.63 (\langle \phi_G / \phi_N \rangle)$

$$\frac{\phi_{G'}}{\phi_{N'}} = \frac{1}{1 + \frac{A_2}{A_1} \left(\frac{m_{p,G}}{m_{1,G}} - 1\right)} \qquad \Rightarrow \qquad \frac{m_{p,G}}{m_{1,G}} - 1 = \frac{A_2}{A_1} \left(\frac{\phi_{N'}}{\phi_{G'}} - 1\right)$$

 $A_2/A_1>0, \phi'_G/\phi_N-1<0 \Rightarrow m_{p,G}< m_{1,G}$: これはありえない

⇒ volatile component がないとデータを説明できない($m_3>0$)

Volatile component $b \cup (m_3 > 0) : A_2 < A_1 < < A_3$ の場合

• Skyrocket *vs.* Namekuji: $\phi_S / \phi_N = 1.73$

1: Matrix 2: Crystalline 3: Volatile

 $w_1 \ge w_2$ のときには、 $m_{3,N}/m_{p,N} > m_{3,S}/m_{p,S}$ (∵ $\phi_S/\phi_N > 1$) ⇒ Namekuji はSkyrocket より volatile component に富む

• Gobou vs. Namekuji: $\phi'_G/\phi_N = 1.63 (\langle \phi_G/\phi_N \rangle)$

$$\frac{\phi_{G}'}{\phi_{N}} = \frac{\frac{m_{p,G}}{m_{3,G}} - 1}{\frac{m_{p,N}}{m_{2,N}} - 1}$$

常に、 $m_{3,N}/m_{p,N} > m_{3,G}/m_{p,G}$ (** $\phi'_G/\phi_N > 1$) ⇒ Namekuji はGobou より volatile component に富む

Volatile component あり($m_3>0$): $A_2=A_1=A_3$ の場合

• Skyrocket *vs.* Namekuji: $\phi_S / \phi_N = 1.73$

1: Matrix 2: Crystalline 3: Volatile

 $w_1 \ge w_2$ のときには、 $m_{3,N}/m_{p,N} > m_{3,S}/m_{p,S}$ (∵ $\phi_S/\phi_N > 1$) ⇒ Namekuji はSkyrocket より volatile component に富む

- Gobou vs. Namekuji: $\phi'_G / \phi_N = 1.63 (\langle \phi_G / \phi_N \rangle)$

$$\frac{\phi_{G}'}{\phi_{N}} = \frac{1 - \frac{m_{3,G}}{m_{p,G}}}{1 + \frac{m_{3,N}}{m_{p,N}}}$$

常に、 $m_{3,N}/m_{p,N} > m_{3,G}/m_{p,G}$ (∵ $\phi'_G/\phi_N > 1$) ⇒ Namekuji はGobou より volatile component に富む

衝突トラックと突入粒子の比較

 $m(Fe)_p/V_t$:衝突トラック形状により変化、 D_m/L_t と逆相関 \Rightarrow ズングリしているほど揮発性成分(有機物、氷?)が多い

まとめ

・ 突入粒子の全鉄量とトラック体積の比: m(Fe)_p/V_t
 多様なトラック形状と相関を示す(4 tracks)
 突入粒子に含まれていた揮発性成分(氷?、有機物)の量の指標
 ズングリしたトラックほど揮発性成分が多い

- トラックの定量的な3次元構造と元素組成(突入粒子質量の推定)
 トラック形成の物理モデルを構築するためデータ
 突入した彗星塵を再構成する重要な手がかり
 飯田ら(本セッション・ポスター)
- ・今後の課題

形状の異なる多くのトラック トラック形成の物理モデル 彗星塵の再構成

トラックに沿った元素分布(Fe/Cl-normalized)

