Radon transform
[1] $p(r, \theta)=\int_{-\infty}^{+\infty} f(x, y) d s$ with $\binom{r}{s}=\left(\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\binom{x}{y}$
Fourier and inverse Fourier transform
[2] $F(u, v)=\iint_{-\infty}^{+\infty} f(x, y) \cdot \exp \{-2 \cdot \pi \cdot i \cdot(u \cdot x+v \cdot y)\} d x d y$
[3] $F(\rho \cdot \cos \theta, \rho \cdot \sin \theta)=\iint_{-\infty}^{+\infty} f(x, y) \cdot \exp \{-2 \cdot \pi \cdot i \cdot \rho \cdot(x \cdot \cos \theta+y \cdot \sin \theta)\} d x d y$

$$
\begin{aligned}
& =\iint_{-\infty}^{+\infty} f(x, y) \cdot \exp (-2 \cdot \pi \cdot i \cdot \rho \cdot r) d r d s \\
& =\int_{-\infty}^{+\infty} p(r, \theta) \cdot \exp (-2 \cdot \pi \cdot i \cdot \rho \cdot r) d r \quad \leftarrow \text { "Fourier slice theorem" }
\end{aligned}
$$

[4] $\rho(r, \theta)=\int_{-\infty}^{+\infty} F(\rho \cdot \cos \theta, \rho \cdot \sin \theta) \cdot \exp (2 \cdot \pi \cdot i \cdot r \cdot \rho) d \rho$

$$
=\iiint_{-\infty}^{+\infty} f(x, y) \cdot \exp \{2 \cdot \pi \cdot i \cdot(r-x \cdot \cos \theta-y \cdot \sin \theta) \cdot \rho\} d x d y d \rho
$$

Nyquist frequency $\equiv \frac{1}{2 \cdot \Delta_{r}}$
[5] $\int_{-\infty}^{+\infty} \exp \{2 \cdot \pi \cdot i \cdot(r-x \cdot \cos \theta-y \cdot \sin \theta) \cdot \rho\} d \rho$

$$
\begin{aligned}
& \approx \int_{-\frac{1}{2 \cdot \Delta_{r}}}^{+\frac{1}{2 \cdot t_{r}}} \exp \{2 \cdot \pi \cdot i \cdot(r-x \cdot \cos \theta-y \cdot \sin \theta) \cdot \rho\} d \rho \\
& =\left[\frac{\exp \{2 \cdot \pi \cdot i \cdot(r-x \cdot \cos \theta-y \cdot \sin \theta) \cdot \rho\}}{2 \cdot \pi \cdot i \cdot(r-x \cdot \cos \theta-y \cdot \sin \theta)}\right]_{\rho=-\frac{1}{2 \cdot \Delta_{r}}}^{\rho=+\frac{1}{2 \cdot \Delta_{r}}} \\
& =\frac{2 \cdot i \cdot \sin \left(2 \cdot \pi \cdot(r-x \cdot \cos \theta-y \cdot \sin \theta) \cdot \frac{1}{2 \cdot \Delta_{r}}\right)}{2 \cdot \pi \cdot i \cdot(r-x \cdot \cos \theta-y \cdot \sin \theta)} \\
& =\frac{1}{\Delta_{r}} \cdot \frac{\sin \left\{\pi \cdot(r-x \cdot \cos \theta-y \cdot \sin \theta) / \Delta_{r}\right\}}{\pi \cdot(r-x \cdot \cos \theta-y \cdot \sin \theta) / \Delta_{r}} \\
& =\frac{1}{\Delta_{r}} \cdot \operatorname{sinc}\left(\pi \cdot \frac{r-x \cdot \cos \theta-y \cdot \sin \theta}{\Delta_{r}}\right)
\end{aligned}
$$

[6] $p(r, \theta) \approx \frac{1}{\Delta_{r}} \cdot \iint_{-\infty}^{+\infty} f(x, y) \cdot \operatorname{sinc}\left(\pi \cdot \frac{r-x \cdot \cos \theta-y \cdot \sin \theta}{\Delta_{r}}\right) d x d y$
numerical integration
[7] $f_{j, k} \equiv f\left(\Delta_{x y} \cdot X_{j}, \Delta_{x y} \cdot Y_{k}\right)$ where $\left\{\begin{array}{c}X_{j} \equiv j-C_{x} \\ Y_{k} \equiv k-C_{y}\end{array}\right\}$ for $\left\{\begin{array}{c}j=0, \cdots, N_{x}-1 \\ k=0, \cdots, N_{y}-1\end{array}\right.$
[8] $p(r, \theta) \approx \frac{\Delta_{x y}^{2}}{\Delta_{r}} \cdot \sum_{j=0}^{N_{x}-1} \sum_{k=0}^{N_{n}-1} f_{j, k} \cdot \operatorname{sinc}\left(\pi \cdot \frac{r-\Delta_{x y} \cdot\left(X_{j} \cdot \cos \theta+Y_{k} \cdot \sin \theta\right)}{\Delta_{r}}\right)$
when $\Delta_{r}=\Delta_{x y}$ and $R_{l} \equiv I-C_{r}$ for $I=0, \cdots, N_{r}-1$
[9] $p_{l}(\theta) \equiv p\left(\Delta_{r} \cdot R_{l}, \theta\right) \approx \Delta_{x y} \cdot \sum_{j=0}^{N_{x}-1} \sum_{k=0}^{N_{y}-1} f_{j, k} \cdot \operatorname{sinc}\left\{\pi \cdot\left(R_{l}-X_{j} \cdot \cos \theta-Y_{k} \cdot \sin \theta\right)\right\}$
[1] $p(a, b)=\int_{-\infty}^{+\infty} f(x, y, z) d c$ with $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{lll}R_{a x} & R_{a y} & R_{a z} \\ R_{b x} & R_{b y} & R_{b z} \\ R_{c x} & R_{c y} & R_{c z}\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \leftarrow$ simple coordinate rotation
[2] $F(u, v, w)=\iiint_{-\infty}^{+\infty} f(x, y, z) \cdot \exp \{-2 \cdot \pi \cdot i \cdot(u \cdot x+v \cdot y+w \cdot z)\} d x d y d z$
[3] $F\left(\alpha \cdot R_{a x}+\beta \cdot R_{b x}, \alpha \cdot R_{a y}+\beta \cdot R_{b y}, \alpha \cdot R_{a z}+\beta \cdot R_{b z}\right)$

$$
\begin{aligned}
& =\iiint_{-\infty}^{+\infty} f(x, y, z) \cdot \exp \left\{-2 \cdot \pi \cdot i \cdot\left(\alpha \cdot\left(R_{a x} \cdot x+R_{a y} \cdot y+R_{a z} \cdot z\right)\right.\right. \\
& \left.\left.\quad+\beta \cdot\left(R_{b x} \cdot x+R_{b y} \cdot y+R_{b z} \cdot z\right)\right)\right\} d x d y d z \\
& =\iiint_{-\infty}^{+\infty} f(x, y, z) \cdot \exp \{-2 \cdot \pi \cdot i \cdot(\alpha \cdot a+\beta \cdot b)\} d a d b d c \\
& =\iint_{-\infty}^{+\infty} p(a, b) \cdot \exp \{-2 \cdot \pi \cdot i \cdot(\alpha \cdot a+\beta \cdot b)\} d a d b
\end{aligned}
$$

[4] $p(s, t)=\iint_{-\infty}^{+\infty} F\left(\alpha \cdot R_{a x}+\beta \cdot R_{b x}, \alpha \cdot R_{a y}+\beta \cdot R_{b y}, \alpha \cdot R_{a z}+\beta \cdot R_{b z}\right) \cdot \exp \{2 \cdot \pi \cdot i \cdot(s \cdot \alpha+t \cdot \beta)\} d \alpha d \beta$

$$
\begin{gathered}
=\iiint \iint_{-\infty}^{+\infty} f(x, y, z) \cdot \exp \{2 \cdot \pi \cdot i \cdot((s-a) \cdot \alpha+(t-b) \cdot \beta)\} d x d y d z d \alpha d \beta \\
=\iiint_{-\infty}^{+\infty} f(x, y, z) \cdot \int_{-\infty}^{+\infty} \exp \{2 \cdot \pi \cdot i \cdot(s-a) \cdot \alpha\} d \alpha \\
\cdot \int_{-\infty}^{+\infty} \exp \{2 \cdot \pi \cdot i \cdot(t-b) \cdot \beta\} d \beta d x d y d z
\end{gathered}
$$

[5] $\int_{-\infty}^{+\infty} \exp \{2 \cdot \pi \cdot i \cdot(s-a) \cdot \alpha\} d \alpha \approx \int_{-\frac{1}{2 \cdot \Delta_{a}}}^{+\frac{1}{2 \cdot \Delta_{a}}} \exp \{2 \cdot \pi \cdot i \cdot(s-a) \cdot \alpha\} d \alpha=\frac{1}{\Delta_{a}} \cdot \operatorname{sinc}\left(\pi \cdot \frac{s-a}{\Delta_{a}}\right)$

$$
\int_{-\infty}^{+\infty} \exp \{2 \cdot \pi \cdot i \cdot(t-b) \cdot \beta\} d \beta \approx \int_{-\frac{1}{2 \cdot \Delta_{b}}}^{+\frac{1}{2}} \exp \{2 \cdot \pi \cdot i \cdot(t-b) \cdot \beta\} d \beta=\frac{1}{\Delta_{b}} \cdot \operatorname{sinc}\left(\pi \cdot \frac{t-b}{\Delta_{b}}\right)
$$

[6] $p(s, t) \approx \frac{1}{\Delta_{a} \cdot \Delta_{b}} \cdot \iiint_{-\infty}^{+\infty} f(x, y, z) \cdot \operatorname{sinc}\left(\pi \cdot \frac{s-a}{\Delta_{a}}\right) \cdot \operatorname{sinc}\left(\pi \cdot \frac{t-b}{\Delta_{b}}\right) d x d y d z$
[7] $f_{j, k, l} \equiv f\left(\Delta_{a} \cdot X_{j}, \Delta_{a} \cdot Y_{k}, \Delta_{b} \cdot Z_{l}\right)$ where $\left\{\begin{array}{c}X_{j} \equiv j-C_{x} \\ Y_{k} \equiv k-C_{y} \\ Z_{l} \equiv I-C_{z}\end{array}\right\}$ for $\left\{\begin{array}{c}j=0, \cdots, N_{x}-1 \\ k=0, \cdots, N_{y}-1 \\ I=0, \cdots, N_{z}-1\end{array}\right.$
[8] $p(s, t) \approx \Delta_{a} \cdot \sum_{j, k, l} f_{j, k, l} \cdot \operatorname{sinc}\left(\pi \cdot \frac{s-a_{j, k, l}}{\Delta_{a}}\right) \cdot \operatorname{sinc}\left(\pi \cdot \frac{t-b_{j, k, l}}{\Delta_{b}}\right)$
where $\left\{\begin{array}{l}a_{j, k, l} \equiv R_{a x} \cdot \Delta_{a} \cdot X_{j}+R_{a y} \cdot \Delta_{a} \cdot Y_{k}+R_{a z} \cdot \Delta_{b} \cdot Z_{l} \\ b_{j, k, l} \equiv R_{b x} \cdot \Delta_{a} \cdot X_{j}+R_{b y} \cdot \Delta_{a} \cdot Y_{k}+R_{b z} \cdot \Delta_{b} \cdot Z_{l}\end{array}\right.$
[9] $p_{m, n} \equiv p\left(\Delta_{a} \cdot A_{m}, \Delta_{b} \cdot B_{n}\right) \approx \Delta_{a} \cdot \sum_{j, k, l} f_{j, k, l} \cdot \operatorname{sinc}\left\{\pi \cdot\left(A_{m}-\left(R_{a x} \cdot X_{j}+R_{a y} \cdot Y_{k}\right)-\frac{\Delta_{b}}{\Delta_{a}} \cdot R_{a z} \cdot Z_{l}\right)\right\}$

$$
\cdot \operatorname{sinc}\left\{\pi \cdot\left(B_{n}-\frac{\Delta_{a}}{\Delta_{b}} \cdot\left(R_{b x} \cdot X_{j}+R_{b y} \cdot Y_{k}\right)-R_{b z} \cdot Z_{l}\right)\right\}
$$

where $\left\{\begin{array}{c}A_{m} \equiv m-C_{a} \\ B_{n} \equiv n-C_{b}\end{array}\right\}$ for $\left\{\begin{array}{c}m=0, \cdots, N_{a}-1 \\ n=0, \cdots, N_{b}-1\end{array}\right.$

Fourier transform of delta function, $\delta(r)$

$$
\begin{align*}
& \int_{-\infty}^{+\infty} \delta(r) \cdot \exp (-2 \cdot \pi \cdot i \cdot \rho \cdot r) d r=1 \\
& \quad \rightarrow \delta(r)=\int_{-\infty}^{+\infty} \exp (2 \cdot \pi \cdot i \cdot r \cdot \rho) d \rho \quad \leftarrow \text { inverse Fourier transform } \\
& \quad \approx \int_{-\frac{1}{2 \cdot \Delta_{r}}}^{+\frac{1}{2 \cdot \Delta_{r}}} \exp (2 \cdot \pi \cdot i \cdot r \cdot \rho) d \rho=\frac{1}{\Delta_{r}} \cdot \operatorname{sinc}\left(\pi \cdot \frac{r}{\Delta_{r}}\right) \tag{5}
\end{align*}
$$

2D Radon transform

[1] $p(r, \theta)=\int_{-\infty}^{+\infty} f(x, y) d s$ with $\binom{r}{s}=\left(\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\binom{x}{y}$

$$
\begin{align*}
\rightarrow p(r, \theta) & =\iint_{-\infty}^{+\infty} f(x, y) \cdot \delta(r-x \cdot \cos \theta-y \cdot \sin \theta) d x d y \tag{1}\\
& =\iint_{-\infty}^{+\infty} f(x, y) \cdot \int_{-\infty}^{+\infty} \exp \{2 \cdot \pi \cdot i \cdot(r-x \cdot \cos \theta-y \cdot \sin \theta) \cdot \rho\} d \rho d x d y \tag{4}\\
& \approx \frac{1}{\Delta_{r}} \cdot \iint_{-\infty}^{+\infty} f(x, y) \cdot \operatorname{sinc}\left(\pi \cdot \frac{r-x \cdot \cos \theta-y \cdot \sin \theta}{\Delta_{r}}\right) d x d y \tag{6}\\
& \approx \frac{\Delta_{x y}^{2}}{\Delta_{r}} \cdot \sum_{j=0}^{N_{x}-1} \sum_{k=0}^{N_{y}-1} f_{j, k} \cdot \operatorname{sinc}\left(\pi \cdot \frac{r-\Delta_{x y} \cdot\left(X_{j} \cdot \cos \theta+Y_{k} \cdot \sin \theta\right)}{\Delta_{r}}\right) \tag{8}
\end{align*}
$$

[3] $F(\rho \cdot \cos \theta, \rho \cdot \sin \theta)=\int_{-\infty}^{+\infty} p(r, \theta) \cdot \exp (-2 \cdot \pi \cdot i \cdot \rho \cdot r) d r \quad \leftarrow$ "Fourier slice theorem"

3D Radon transform

[1] $p(a, b)=\int_{-\infty}^{+\infty} f(x, y, z) d c$ with $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{lll}R_{a x} & R_{a y} & R_{a z} \\ R_{b x} & R_{b y} & R_{b z} \\ R_{c x} & R_{c y} & R_{c z}\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \leftarrow$ simple coordinate rotation

$$
\begin{align*}
& \rightarrow p(s, t)= \iiint_{-\infty}^{+\infty} f(x, y, z) \cdot \delta\left(s-R_{a x} \cdot x-R_{a y} \cdot y-R_{a z} \cdot z\right) \\
& \cdot \delta\left(t-R_{b x} \cdot x-R_{b y} \cdot y-R_{b z} \cdot z\right) d x d y d z \tag{1}\\
&= \iiint_{-\infty}^{+\infty} f(x, y, z) \cdot \int_{-\infty}^{+\infty} \exp \{2 \cdot \pi \cdot i \cdot(s-a) \cdot \alpha\} d \alpha \\
& \cdot \int_{-\infty}^{+\infty} \exp \{2 \cdot \pi \cdot i \cdot(t-b) \cdot \beta\} d \beta d x d y d z \tag{4}\\
& \approx \frac{1}{\Delta_{a} \cdot \Delta_{b}} \cdot \iiint_{-\infty}^{+\infty} f(x, y, z) \cdot \operatorname{sinc}\left(\pi \cdot \frac{s-a}{\Delta_{a}}\right) \cdot \operatorname{sinc}\left(\pi \cdot \frac{t-b}{\Delta_{b}}\right) d x d y d z \tag{6}\\
& \approx \Delta_{a} \cdot \sum_{j, k, l} f_{j, k, l} \cdot \operatorname{sinc}\left(\pi \cdot \frac{s-a_{j, k, l}}{\Delta_{a}}\right) \cdot \operatorname{sinc}\left(\pi \cdot \frac{t-b_{j, k, l}}{\Delta_{b}}\right) \tag{8}
\end{align*}
$$

$$
\text { where }\left\{\begin{array}{l}
a_{j, k, l} \equiv R_{a x} \cdot \Delta_{a} \cdot X_{j}+R_{a y} \cdot \Delta_{a} \cdot Y_{k}+R_{a z} \cdot \Delta_{b} \cdot Z_{l} \\
b_{j, k, l} \equiv R_{b x} \cdot \Delta_{a} \cdot X_{j}+R_{b y} \cdot \Delta_{a} \cdot Y_{k}+R_{b z} \cdot \Delta_{b} \cdot Z_{l}
\end{array}\right.
$$

[3] $F\left(\alpha \cdot R_{a x}+\beta \cdot R_{b x}, \alpha \cdot R_{a y}+\beta \cdot R_{b y}, \alpha \cdot R_{a z}+\beta \cdot R_{b z}\right)=\iint_{-\infty}^{+\infty} p(a, b) \cdot \exp \{-2 \cdot \pi \cdot i \cdot(\alpha \cdot a+\beta \cdot b)\} d a d b$

