calculation of root mean square difference

real number data, a_{x} and b_{x}

$$
\begin{cases}a_{x} & \text { with } x=0, \cdots, N_{a}-1 \\ b_{x} & \text { with } x=0, \cdots, N_{b}-1\end{cases}
$$

displacement of b_{x} with respect to a_{x}, d

$$
d=D_{1}, \cdots, D_{2} \quad \text { where } 1-N_{b} \leq D_{1} \leq D_{2} \leq N_{a}-1
$$

number of overlapped data, $O(d)$

$$
O(d)=\left\{\begin{array}{ll}
N_{b}+d & \text { when } 1-N_{b} \leq d \leq 0 \\
N_{b} & \text { when } 0 \leq d \leq N_{a}-N_{b} \\
N_{a}-d & \text { when } N_{a}-N_{b} \leq d \leq N_{a}-1
\end{array}\right\} \text { when } N_{a} \geq N_{b}
$$

sum of squared data , $S S(d)$

$$
S S(d)=\sum_{x=0}^{O(d)-1}\left\{\begin{array}{ll}
\left(a_{x}^{2}+b_{x-d}^{2}\right) & \text { when } d \leq 0 \\
\left(a_{x+d}^{2}+b_{x}^{2}\right) & \text { when } d \geq 0
\end{array}\right\}
$$

cross correlation of data,$C C(d)$

$$
C C(d)=\sum_{x=0}^{O(d)-1}\left\{\begin{array}{ll}
a_{x} \cdot b_{x-d} & \text { when } d \leq 0 \\
a_{x+d} \cdot b_{x} & \text { when } d \geq 0
\end{array}\right\}
$$

mean square difference of data,$M S D(d)$

$$
\begin{aligned}
M S D(d) & =\frac{1}{O(d)} \cdot \sum_{x=0}^{O(d)-1}\left\{\begin{array}{ll}
\left(a_{x}-b_{x-d}\right)^{2} & \text { when } d \leq 0 \\
\left(a_{x+d}-b_{x}\right)^{2} & \text { when } d \geq 0
\end{array}\right\} \\
& =\frac{S S(d)-2 \cdot C C(d)}{O(d)}
\end{aligned}
$$

root mean square difference of data, $R M S D(d)$
$R M S D(d)=\sqrt{M S D(d)} \quad$ for $d=D_{1}, \cdots, D_{2}$

calculation of $S S(d)$ and $C C(d)$ using discrete Fourier transform (DFT)

number of terms for DFT , M
$M>\max \left(N_{a}, N_{b}\right)+\max \left(\left|D_{1}\right|,\left|D_{2}\right|\right) \rightarrow$ if $d=1-N_{b}, \cdots, N_{a}-1$ then $M \geq 2 \cdot \max \left(N_{a}, N_{b}\right)$ calculation of $S S(d)$
[SS1] for $x=0, \cdots, M-1$ set $g_{x}=\left\{\begin{array}{ll}a_{x}^{2} & \text { when } x<N_{a} \\ 0 & \text { when } x \geq N_{a}\end{array}\right\}+i \cdot\left\{\begin{array}{ll}b_{x}^{2} & \text { when } x<N_{b} \\ 0 & \text { when } x \geq N_{b}\end{array}\right\}$
[SS2] for $u=0, \cdots, M-1$ set $G_{u}=\sum_{x=0}^{M-1} g_{x} \cdot \exp (-i \cdot 2 \cdot \pi \cdot x \cdot u / M)$
[SS3] set $p_{0}=\operatorname{Re}\left(G_{0}\right) \cdot N_{b}+N_{a} \cdot \operatorname{Im}\left(G_{0}\right)$

$$
\text { for } u=1, \cdots, M-1
$$

set $\alpha_{u}=\exp \left(-i \cdot \pi \cdot\left(N_{a}-1\right) \cdot u / M\right) \cdot \sin \left(\pi \cdot N_{a} \cdot u / M\right) / \sin (\pi \cdot u / M)$

$$
\beta_{u}=\exp \left(+i \cdot \pi \cdot\left(N_{b}-1\right) \cdot u / M\right) \cdot \sin \left(\pi \cdot N_{b} \cdot u / M\right) / \sin (\pi \cdot u / M)
$$

$$
p_{u}=\frac{1}{2} \cdot\left(\left(G_{u}+G_{M-u}^{*}\right) \cdot \beta_{u}+i \cdot \alpha_{u} \cdot\left(G_{u}^{*}-G_{M-u}\right)\right)
$$

[SS4] for $x=0, \cdots, M-1$ set $P_{x}=\sum_{u=0}^{M-1} p_{u} \cdot \exp (+i \cdot 2 \cdot \pi \cdot u \cdot x / M)$
[SS5] $S S(d)=\frac{1}{M} \cdot\left\{\begin{array}{ll}\operatorname{Re}\left(P_{M+d}\right) & \text { when } d<0 \\ \operatorname{Re}\left(P_{d}\right) & \text { when } d \geq 0\end{array}\right\}$
calculation of $C C(d)$
[CC1] for $x=0, \cdots, M-1$ set $h_{x}=\left\{\begin{array}{ll}a_{x} & \text { when } x<N_{a} \\ 0 & \text { when } x \geq N_{a}\end{array}\right\}+i \cdot\left\{\begin{array}{ll}b_{x} & \text { when } x<N_{b} \\ 0 & \text { when } x \geq N_{b}\end{array}\right\}$
[CC2] for $u=0, \cdots, M-1$ set $H_{u}=\sum_{x=0}^{M-1} h_{x} \cdot \exp (-i \cdot 2 \cdot \pi \cdot x \cdot u / M)$
[CC3] set $q_{0}=\operatorname{Re}\left(H_{0}\right) \cdot \operatorname{Im}\left(H_{0}\right)$
for $u=1, \cdots, M-1$ set $q_{u}=i \cdot \frac{1}{4} \cdot\left(H_{u}+H_{M-u}^{*}\right) \cdot\left(H_{u}^{*}-H_{M-u}\right)$
[CC4] for $x=0, \cdots, M-1$ set $Q_{x}=\sum_{u=0}^{M-1} q_{u} \cdot \exp (+i \cdot 2 \cdot \pi \cdot u \cdot x / M)$
[CC5] $C C(d)=\frac{1}{M} \cdot\left\{\begin{array}{ll}\operatorname{Re}\left(Q_{M+d}\right) & \text { when } d<0 \\ \operatorname{Re}\left(Q_{d}\right) & \text { when } d \geq 0\end{array}\right\}$

